Molecular doping of low-bandgap-polymer:fullerene solar cells: Effects on transport and solar cells

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Ali Veysel Tunc - , Carl von Ossietzky Universität Oldenburg (Autor:in)
  • Antonietta De Sio - , Carl von Ossietzky Universität Oldenburg (Autor:in)
  • Daniel Riedel - , Ludwig-Maximilians-Universität München (LMU) (Autor:in)
  • Felix Deschler - , Ludwig-Maximilians-Universität München (LMU) (Autor:in)
  • Enrico Da Como - , Ludwig-Maximilians-Universität München (LMU) (Autor:in)
  • Jürgen Parisi - , Carl von Ossietzky Universität Oldenburg (Autor:in)
  • Elizabeth Von Hauff - , Institut für Theoretische Physik, Professur für Beschichtungstechnologien für die Elektronik (gB/FG), Energy and Semiconductor Research Laboratory, Carl von Ossietzky Universität Oldenburg, Albert-Ludwigs-Universität Freiburg (Autor:in)

Abstract

We show how molecular doping can be implemented to improve the performance of solution processed bulk heterojunction solar cells based on a low-bandgap polymer mixed with a fullerene derivative. The molecular dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) is introduced into blends of poly[2,6(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b0]- dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) via co-solution in a range of concentrations from 0% to 1%. We demonstrate that the hole conductivity and mobility increase with doping concentration using field-effect measurements. Photoinduced absorption (PIA) spectroscopy reveals that the polaron density in the blends increases with doping. We show that the open circuit voltage and short circuit current of the corresponding solar cells can be improved by doping at 0.5%, resulting in improved power conversion efficiencies. The increase in performance is discussed in terms of trap filling due to the increased carrier density, and reduced recombination correlated to the improvement in mobility.

Details

OriginalspracheEnglisch
Seiten (von - bis)290-296
Seitenumfang7
FachzeitschriftOrganic electronics
Jahrgang13
Ausgabenummer2
PublikationsstatusVeröffentlicht - Feb. 2012
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-6269-0540/work/172082592

Schlagworte

Schlagwörter

  • Carrier mobility, Conducting polymer, Doping, Organic semiconductors, Photovoltaics, Solar cells