Molecular Domino Toppling for Directed Self-Erasing Information Transfer

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Ying Li - , Karlsruher Institut für Technologie (Autor:in)
  • Abhinav Chandresh - , Karlsruher Institut für Technologie, Freie Universität (FU) Berlin (Autor:in)
  • Hung Hsuan Lin - , Professur für Theoretische Chemie (Autor:in)
  • Nina Vankova - , Professur für Theoretische Chemie (Autor:in)
  • Dragos Mutruc - , Humboldt-Universität zu Berlin (Autor:in)
  • Thomas Heine - , Professur für Theoretische Chemie, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Autor:in)
  • Stefan Hecht - , Humboldt-Universität zu Berlin (Autor:in)
  • Lars Heinke - , Karlsruher Institut für Technologie, Freie Universität (FU) Berlin (Autor:in)

Abstract

In the pursuit of more secure information transfer, advanced nanoelectronic technologies and nanomaterials must be developed. Here, a material is presented able to undergo an unprecedented light-pumped directional charge-transfer process reminiscent of toppling dominoes. The material is based on ortho-fluorinated azobenzene molecules which are organized in molecular rows by the regular array of a metal–organic framework. The azobenzene molecules undergo light-induced trans→cis forward as well as electrocatalytic cis→trans backward isomerization. The findings reveal that electron hopping occurs in a sequential and propagating manner between the light-generated cis isomers along with an isomerization of the sample to the trans-state. Thus, light can be used to locally write information, which subsequently can be read out by the transferred charge with simultaneous deletion of the information. This freely repeatable, self-erasing domino information transfer is a groundbreaking new mechanism to process information on the molecular level that may find application in encryption.

Details

OriginalspracheEnglisch
Aufsatznummer2419195
FachzeitschriftAdvanced materials
Jahrgang37
Ausgabenummer26
PublikationsstatusVeröffentlicht - 3 Juli 2025
Peer-Review-StatusJa

Externe IDs

PubMed 40190219

Schlagworte

Schlagwörter

  • azobenzenes, metal–organic frameworks, molecular dominoes, smart material systems