Modulation of calcium-activated potassium channels induces cardiogenesis of pluripotent stem cells and enrichment of pacemaker-like cells

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Alexander Kleger - , Universität Ulm (Autor:in)
  • Thomas Seufferlein - , Martin-Luther-Universität Halle-Wittenberg (Autor:in)
  • Daniela Malan - , Universität Bonn (Autor:in)
  • Michael Tischendorf - , Universität Ulm (Autor:in)
  • Alexander Storch - , Klinik und Poliklinik für Neurologie, Center for Regenerative Therapies Dresden (CRTD) (Autor:in)
  • Anne Wolheim - , Friedrich-Schiller-Universität Jena (Autor:in)
  • Stephan Latz - , Universität Ulm, Friedrich-Schiller-Universität Jena (Autor:in)
  • Stephanie Protze - , Universitätsklinikum Carl Gustav Carus Dresden (Autor:in)
  • Marc Porzner - , Martin-Luther-Universität Halle-Wittenberg (Autor:in)
  • Christian Proepper - , Universität Ulm (Autor:in)
  • Cornelia Brunner - , Universität Ulm (Autor:in)
  • Sarah Fee Katz - , Universität Ulm (Autor:in)
  • Ganesh Varma Pusapati - , Universität Ulm (Autor:in)
  • Lars Bullinger - , Universität Ulm (Autor:in)
  • Wolfgang Michael Franz - , Ludwig-Maximilians-Universität München (LMU) (Autor:in)
  • Ralf Koehntop - , Universität Ulm (Autor:in)
  • Klaudia Giehl - , Universität Ulm (Autor:in)
  • Andreas Spyrantis - , Universität Ulm (Autor:in)
  • Oliver Wittekindt - , Universität Ulm (Autor:in)
  • Qiong Lin - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Martin Zenke - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Bernd K. Fleischmann - , Universität Bonn (Autor:in)
  • Maria Wartenberg - , Friedrich-Schiller-Universität Jena (Autor:in)
  • Anna M. Wobus - , Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (Autor:in)
  • Tobias M. Boeckers - , Universität Ulm (Autor:in)
  • Stefan Liebau - , Universität Ulm, Friedrich-Schiller-Universität Jena (Autor:in)

Abstract

Background: Ion channels are key determinants for the function of excitable cells, but little is known about their role and involvement during cardiac development. Earlier work identified Ca-activated potassium channels of small and intermediate conductance (SKCas) as important regulators of neural stem cell fate. Here we have investigated their impact on the differentiation of pluripotent cells toward the cardiac lineage. Methods and Results: We have applied the SKCa activator 1-ethyl-2-benzimidazolinone on embryonic stem cells and identified this particular ion channel family as a new critical target involved in the generation of cardiac pacemaker-like cells: SKCa activation led to rapid remodeling of the actin cytoskeleton, inhibition of proliferation, induction of differentiation, and diminished teratoma formation. Time-restricted SKCa activation induced cardiac mesoderm and commitment to the cardiac lineage as shown by gene regulation, protein, and functional electrophysiological studies. In addition, the differentiation into cardiomyocytes was modulated in a qualitative fashion, resulting in a strong enrichment of pacemaker-like cells. This was accompanied by induction of the sino-atrial gene program and in parallel by a loss of the chamber-specific myocardium. In addition, SKCa activity induced activation of the Ras-Mek-Erk signaling cascade, a signaling pathway involved in the 1-ethyl-2-benzimidazolinone-induced effects. Conclusions: SKCa activation drives the fate of pluripotent cells toward mesoderm commitment and cardiomyocyte specification, preferentially into nodal-like cardiomyocytes. This provides a novel strategy for the enrichment of cardiomyocytes and in particular, the generation of a specific subtype of cardiomyocytes, pacemaker-like cells, without genetic modification.

Details

OriginalspracheEnglisch
Seiten (von - bis)1823-1836
Seitenumfang14
FachzeitschriftCirculation
Jahrgang122
Ausgabenummer18
PublikationsstatusVeröffentlicht - 2 Nov. 2010
Peer-Review-StatusJa

Externe IDs

PubMed 20956206

Schlagworte

Schlagwörter

  • cells, developmental, embryology, genes, ion channels, stem cells