Modelling of two-phase flow with surface active particles
Publikation: Hochschulschrift/Abschlussarbeit › Dissertation
Beitragende
Abstract
Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids compose an emulsion with interesting new properties and offer an important route to new soft materials. Based on the principles of mass conservation and thermodynamic consistency, we develop a continuum model for such systems which combines a Cahn-Hilliard-Navier-Stokes model for the macroscopic two-phase fluid system with a surface Phase-Field-Crystal model for the microscopic colloidal particles along the interface. We begin with validating the used flow model by testing different diffuse interface models on a benchmark configuration for a two-dimensional rising bubble and compare the results with reference solutions obtained by other two-phase flow models. Furthermore, we present a new method for simulating two-phase flows in complex geometries, taking into account contact lines separating immiscible incompressible components. In this approach, the complex geometry is described implicitly by introducing a new phase-field variable, which is a smooth approximation of the characteristic function of the complex domain. The fluid and component concentration equations are reformulated and solved in larger regular domain with the boundary conditions being implicitly modeled using source terms. Finally, we derive the thermodynamically consistent diffuse interface model for two-phase flow with interfacial particles by taking into account the surface energy and the energy associated with surface colloids from the surface PFC model. The resulting governing equations are the phase field crystal equations and Navier-Stokes Cahn-Hilliard equations with an additional elastic stress. To validate our approach, we derive a sharp interface model and show agreement with the diffuse interface model. We demonstrate the feasibility of the model and present numerical simulations that confirm the ability of the colloids to make the interface sufficiently rigid to resist external forces and to stabilize interfaces for long times.
Details
Originalsprache | Englisch |
---|---|
Qualifizierungsstufe | Dr. rer. nat. |
Gradverleihende Hochschule | |
Betreuer:in / Berater:in |
|
Datum der Verteidigung (Datum der Urkunde) | 27 Juli 2012 |
Publikationsstatus | Veröffentlicht - 31 Juli 2012 |
No renderer: customAssociatesEventsRenderPortal,dk.atira.pure.api.shared.model.researchoutput.Thesis
Externe IDs
urn | nbn:de:bsz:14-qucosa-92397 |
---|
Schlagworte
Schlagwörter
- two-phase flow