Modelling Inhomogeneous Geodata Quality in a Dataset’s Metadata

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

Abstract. Extensive data quality descriptions as a vital part of a dataset’s metadata are widely accepted, albeit their provision in a formalized manner is often lacking. This is due to a number of problems that are frequently encountered by geodata producing scientists. As one of these problems, we identified missing, unknown or unused options to model inhomogeneity of data quality across space, time, and theme in a dataset’s metadata. Detailed information of inhomogeneous geodata quality beyond dataset-wide statistical measures (variance, min, max, etc.) is often only described in dataset accompanying papers or quality reports. These text-based approaches prevent precise querying and hinder the development of advanced data discovery tools that could make valuable use of inhomogeneous data quality information. We propose a profile for the data quality vocabulary (DQV) that allows to model inhomogeneous geodata quality. Considering established vocabularies typically used to describe geographic metadata, as well as ensuring compatibility with the default version of DQV, enhances the usability and thus, minimizes the effort for data producers to provide formalized descriptions of inhomogeneous data quality.

Details

OriginalspracheEnglisch
Aufsatznummer59
Seitenumfang6
FachzeitschriftAGILE: GIScience Series
Jahrgang3
PublikationsstatusVeröffentlicht - 2022
Peer-Review-StatusJa

Konferenz

TitelAGILE 2022
UntertitelArtificial Intelligence in the service of Geospatial Technologies
Veranstaltungsnummer25
Dauer14 - 17 Juni 2022
OrtVilnius Gediminas Technical University
StadtVilnius
LandLitauen

Externe IDs

ORCID /0000-0002-5181-4368/work/144671073
Mendeley e41feb86-70a3-30fa-8e92-3157317bc04c

Schlagworte

Bibliotheksschlagworte