Modelling and computational improvements to the simulation of single vector-boson plus jet processes for the ATLAS experiment
Publikation: Spezielle Publikationen/Beiträge › Hervorgehobener Artikel/Titelblatt › Beigetragen › Begutachtung
Beitragende
- University of Oklahoma
- University of Massachusetts
- Georg-August-Universität Göttingen
- Royal Holloway University of London
- Brookhaven National Laboratory
- Mohammed V University in Rabat
- Tel Aviv University
- Technion-Israel Institute of Technology
- New York University
- Pontificia Universidad Católica de Chile
- National Institute for Nuclear Physics
- Abdus Salam International Centre for Theoretical Physics
- King's College London (KCL)
- Johannes Gutenberg-Universität Mainz
- Laboratoire d'Annecy-le-Vieux de Physique des Particules LAPP
- AGH University of Science and Technology
- University of Toronto
- Brandeis University
- Northern Illinois University
- Bogazici University
- Istanbul University
- Universität Genf
- Rutherford Appleton Laboratory
- University of California at Santa Cruz
- Université Paris-Saclay
- Institut de Física d’Altes Energies (IFAE)
- Università degli Studi di Pavia
- Alexandru Ioan Cuza University of Iaşi
- Laboratório de Instrumentação e Física Experimental de Partículas
- University of Granada
- Consejo Superior de Investigaciones Científicas (CSIC)
- Azerbaijan National Academy of Sciences (ANAS)
- Joint Institute for Nuclear Research
- McGill University
- Polska Akademia Nauk
- University of Warwick
Abstract
This paper presents updated Monte Carlo configurations used to model the production of single electroweak vector bosons (W, Z/γ∗) in association with jets in proton-proton collisions for the ATLAS experiment at the Large Hadron Collider. Improvements pertaining to the electroweak input scheme, parton-shower splitting kernels and scale-setting scheme are shown for multi-jet merged configurations accurate to next-to-leading order in the strong and electroweak couplings. The computational resources required for these set-ups are assessed, and approximations are introduced resulting in a factor three reduction of the per-event CPU time without affecting the physics modelling performance. Continuous statistical enhancement techniques are introduced by ATLAS in order to populate low cross-section regions of phase space and are shown to match or exceed the generated effective luminosity. This, together with the lower per-event CPU time, results in a 50% reduction in the required computing resources compared to a legacy set-up previously used by the ATLAS collaboration. The set-ups described in this paper will be used for future ATLAS analyses and lay the foundation for the next generation of Monte Carlo predictions for single vector-boson plus jets production. [Figure not available: see fulltext.].
Details
| Originalsprache | Englisch |
|---|---|
| Band | 2022 |
| Ausgabenummer | 8 |
| Fachzeitschrift | Journal of High Energy Physics : JHEP |
| Publikationsstatus | Veröffentlicht - Aug. 2022 |
| Peer-Review-Status | Ja |
No renderer: customAssociatesEventsRenderPortal,dk.atira.pure.api.shared.model.researchoutput.ContributionToPeriodical
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Hadron-Hadron Scattering