Modeling of microstructure evolution with dynamic recrystallization in finite element simulations of martensitic steel

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Thomas J. Baron - , ThyssenKrupp Steel Europe AG (Autor:in)
  • Kirill Khlopkov - , ThyssenKrupp Steel Europe AG (Autor:in)
  • Thomas Pretorius - , ThyssenKrupp Steel Europe AG (Autor:in)
  • Daniel Balzani - , Professur für Mechanik (OTT-Professur) (Autor:in)
  • Dominik Brands - , Universität Duisburg-Essen (Autor:in)
  • Jörg Schröder - , Universität Duisburg-Essen (Autor:in)

Abstract

A metallurgical material description of the flow behavior for finite element (FE) simulations was developed. During hot compression tests, the dynamic microstructure evolution is modeled on the example of high-strength martensitic steel MS-W 1200. Compression tests at 900-1000 °C with a strain rate of 0.1 s-1 on fine-grain and coarse-grain samples were performed. An analysis of the flow behavior identified a strong correlation between the dynamic recrystallization kinetics and the initial microstructure. The regression analysis has been used to determine correction factors of the new model to describe the dynamic recrystallization. A good agreement between FE simulation and measurement shows the validity of the new model. A metallurgical material description of the flow behavior for finite element (FE) simulations is developed. During hot compression tests, the dynamic microstructure evolution is modeled on the example of high-strength martensitic steel MS-W 1200. An analysis of the flow behavior identifies a strong correlation between the dynamic recrystallization kinetics and the initial microstructure.

Details

OriginalspracheEnglisch
Seiten (von - bis)37-45
Seitenumfang9
FachzeitschriftSteel Research International
Jahrgang87
Ausgabenummer1
PublikationsstatusVeröffentlicht - 2016
Peer-Review-StatusJa

Externe IDs

Scopus 84955401259

Schlagworte

Schlagwörter

  • martensitic steel, material model, microstructure evolution, hot forming, dynamic recrystallization, grain size effects