Modeling nonlinear systems with cellular neural networks

Publikation: Beitrag zu KonferenzenPaperBeigetragenBegutachtung

Beitragende

  • F. Puffer - , Universitätsklinikum Frankfurt (Autor:in)
  • R. Tetzlaff - , Universitätsklinikum Frankfurt (Autor:in)
  • Dietrich Wolf - , Universitätsklinikum Frankfurt (Autor:in)

Abstract

A learning procedure for the dynamics of cellular neural networks (CNN) with nonlinear cell interactions is presented. It is applied in order to find the parameters of CNN that model the dynamics of certain nonlinear systems, which are characterized by partial differential equations (PDE). Values of a solution of the considered PDE for a particular initial condition are taken as the training pattern at only a small number of points in time. Our results demonstrate that CNN obtained with our method approximate the dynamical behaviour of various nonlinear systems accurately. Results for two nonlinear PDE, the Φ4-equation and the sine-Gordon equation, are discussed in detail.

Details

OriginalspracheEnglisch
Seiten3513-3516
Seitenumfang4
PublikationsstatusVeröffentlicht - 1996
Peer-Review-StatusJa
Extern publiziertJa

Konferenz

Titel1996 IEEE International Conference on Acoustics, Speech, and Signal Processing
KurztitelICASSP
Veranstaltungsnummer
Dauer7 - 10 Mai 1996
BekanntheitsgradInternationale Veranstaltung
Ort
StadtAtlanta
LandUSA/Vereinigte Staaten

Externe IDs

ORCID /0000-0001-7436-0103/work/142240250