Modeling Excitable Cells with Memristors

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Maheshwar Sah - , Nepal Engineering College, TJ Maxx (Autor:in)
  • Alon Ascoli - , Polytechnic University of Turin (Autor:in)
  • Ronald Tetzlaff - , Professur für Grundlagen der Elektrotechnik (GE) (Autor:in)
  • Vetriveeran Rajamani - , Vellore Institute of Technology (Autor:in)
  • Ram Kaji Budhathoki - , Kathmandu University (Autor:in)

Abstract

This paper presents an in-depth analysis of an excitable membrane of a biological system by proposing a novel approach that the cells of the excitable membrane can be modeled as the networks of memristors. We provide compelling evidence from the Chay neuron model that the state-independent mixed ion channel is a nonlinear resistor, while the state-dependent voltage-sensitive potassium ion channel and calcium-sensitive potassium ion channel function as generic memristors from the perspective of electrical circuit theory. The mechanisms that give rise to periodic oscillation, aperiodic (chaotic) oscillation, spikes, and bursting in an excitable cell are also analyzed via a small-signal model, a pole-zero diagram of admittance functions, local activity, the edge of chaos, and the Hopf bifurcation theorem. It is also proved that the zeros of the admittance functions are equivalent to the eigen values of the Jacobian matrix, and the presence of the positive real parts of the eigen values between the two bifurcation points lead to the generation of complicated electrical signals in an excitable membrane. The innovative concepts outlined in this paper pave the way for a deeper understanding of the dynamic behavior of excitable cells, offering potent tools for simulating and exploring the fundamental characteristics of biological neurons.

Details

OriginalspracheEnglisch
Aufsatznummer31
FachzeitschriftJournal of Low Power Electronics and Applications
Jahrgang14
Ausgabenummer2
PublikationsstatusVeröffentlicht - Juni 2024
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0001-7436-0103/work/172081485

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • bursting, chaos, Chay model, edge of chaos, excitable cell, Hopf bifurcation, local activity, memristor, oscillation, pole-zero diagram, small-signal model, spikes