Mission Balance: Generating Under-Represented Class Samples Using Video Diffusion Models

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Computer-assisted interventions can improve intraoperative guidance, particularly through deep learning methods that harness the spatiotemporal information in surgical videos. However, the severe data imbalance often found in surgical video datasets hinders the development of high-performing models. In this work, we aim to overcome the data imbalance by synthesizing surgical videos. We propose a unique two-stage, text-conditioned diffusion-based method to generate high-fidelity surgical videos for under-represented classes. Our approach conditions the generation process on text prompts and decouples spatial and temporal modeling by utilizing a 2D latent diffusion model to capture spatial content and then integrating temporal attention layers to ensure temporal consistency. Furthermore, we introduce a rejection sampling strategy to select the most suitable synthetic samples, effectively augmenting existing datasets to address class imbalance. We evaluate our method on two downstream tasks—surgical action recognition and intra-operative event prediction—demonstrating that incorporating synthetic videos from our approach substantially enhances model performance.

Details

OriginalspracheEnglisch
TitelMedical Image Computing and Computer Assisted Intervention – MICCAI 2025
Redakteure/-innenJames C. Gee, Jaesung Hong, Carole H. Sudre, Polina Golland, Jinah Park, Daniel C. Alexander, Juan Eugenio Iglesias, Archana Venkataraman, Jong Hyo Kim
Herausgeber (Verlag)Springer Science and Business Media B.V.
Seiten412-422
Seitenumfang11
ISBN (elektronisch)978-3-032-05141-7
ISBN (Print)978-3-032-05140-0
PublikationsstatusVeröffentlicht - 2026
Peer-Review-StatusJa

Publikationsreihe

ReiheLecture notes in computer science
Band15970 LNCS
ISSN0302-9743

Konferenz

Titel28th International Conference on Medical Image Computing and Computer Assisted Intervention
KurztitelMICCAI 2025
Veranstaltungsnummer28
Dauer23 - 27 September 2025
Webseite
OrtDaejeon Convention Center
StadtDaejeon
LandSüdkorea

Externe IDs

ORCID /0000-0002-4590-1908/work/197964896
ORCID /0000-0003-2265-4809/work/199217292

Schlagworte

Schlagwörter

  • Data Imbalance, Surgical Data Science, Video Diffusion