Mining process data using user defined curve patterns

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Tilman Barz - , Technische Universität Berlin (Autor:in)
  • O. Frey - , Technische Universität Berlin (Autor:in)
  • J. Huss - , Technische Universität Berlin (Autor:in)
  • L. Urbas - , Center for Human Machine Interaction, Technische Universität Berlin (Autor:in)

Abstract

Sensor data trends are commonly used by engineers to get an overview of process dynamics and history. Reading and description of these trends is understood as a process of segmentation and categorization of time series in a sequence of symbols. Based on this procedure we present a method for extraction and analysis of trends in process data corresponding to the operator's view of signal processing. The idea of interaction and algorithmic implementation are presented. Finally the application to experimental data of a distillation column shows the capability to provide assistance in exploration of historical data for analysis, diagnosis and decision-making in operation of chemical processes.

Details

OriginalspracheEnglisch
TitelCHISA 2006 - 17th International Congress of Chemical and Process Engineering
PublikationsstatusVeröffentlicht - 2006
Peer-Review-StatusJa
Extern publiziertJa

Konferenz

TitelCHISA 2006 - 17th International Congress of Chemical and Process Engineering
Dauer27 - 31 August 2006
StadtPrague
LandTschechische Republik

Externe IDs

ORCID /0000-0001-5165-4459/work/174432540

Schlagworte

Forschungsprofillinien der TU Dresden

DFG-Fachsystematik nach Fachkollegium

Ziele für nachhaltige Entwicklung

Schlagwörter

  • Data mining, Feature extraction, Time series, Trend detection, Wavelet Transform Modulus Maxima (WTMM), Wavelet transformation