Mining process data using user defined curve patterns
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Sensor data trends are commonly used by engineers to get an overview of process dynamics and history. Reading and description of these trends is understood as a process of segmentation and categorization of time series in a sequence of symbols. Based on this procedure we present a method for extraction and analysis of trends in process data corresponding to the operator's view of signal processing. The idea of interaction and algorithmic implementation are presented. Finally the application to experimental data of a distillation column shows the capability to provide assistance in exploration of historical data for analysis, diagnosis and decision-making in operation of chemical processes.
Details
Originalsprache | Englisch |
---|---|
Titel | CHISA 2006 - 17th International Congress of Chemical and Process Engineering |
Publikationsstatus | Veröffentlicht - 2006 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Konferenz
Titel | CHISA 2006 - 17th International Congress of Chemical and Process Engineering |
---|---|
Dauer | 27 - 31 August 2006 |
Stadt | Prague |
Land | Tschechische Republik |
Externe IDs
ORCID | /0000-0001-5165-4459/work/174432540 |
---|
Schlagworte
Forschungsprofillinien der TU Dresden
DFG-Fachsystematik nach Fachkollegium
Ziele für nachhaltige Entwicklung
ASJC Scopus Sachgebiete
Schlagwörter
- Data mining, Feature extraction, Time series, Trend detection, Wavelet Transform Modulus Maxima (WTMM), Wavelet transformation