Minimum distance estimation in normed linear spaces with Donsker-classes

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We consider minimum distance estimators where the discrepancy function is defined in terms of a supremum-norm based on a Donsker-class of functions. If the parameter set is contained in a normed linear space we prove a Portmanteau-type theorem. Here, the limit in general is not a probability measure, but an outer measure given by the hitting family of the set of all minimizing points of a certain stochastic process. In case there is exactly one minimizer one obtains traditional weak convergence.

Details

OriginalspracheEnglisch
Seiten (von - bis)246-266
Seitenumfang21
FachzeitschriftMathematical methods of statistics
Jahrgang19
Ausgabenummer3
PublikationsstatusVeröffentlicht - Sept. 2010
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • almost weak convergence, argmin theorems, Donsker class, empirical process, Hadamard differentiability

Bibliotheksschlagworte