Minimum distance estimation in normed linear spaces with Donsker-classes
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We consider minimum distance estimators where the discrepancy function is defined in terms of a supremum-norm based on a Donsker-class of functions. If the parameter set is contained in a normed linear space we prove a Portmanteau-type theorem. Here, the limit in general is not a probability measure, but an outer measure given by the hitting family of the set of all minimizing points of a certain stochastic process. In case there is exactly one minimizer one obtains traditional weak convergence.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 246-266 |
Seitenumfang | 21 |
Fachzeitschrift | Mathematical methods of statistics |
Jahrgang | 19 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - Sept. 2010 |
Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- almost weak convergence, argmin theorems, Donsker class, empirical process, Hadamard differentiability