Microengineered Hollow Graphene Tube Systems Generate Conductive Hydrogels with Extremely Low Filler Concentration

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Christine Arndt - , Christian-Albrechts-Universität zu Kiel (CAU), Universität Heidelberg (Autor:in)
  • Margarethe Hauck - , Christian-Albrechts-Universität zu Kiel (CAU) (Autor:in)
  • Irene Wacker - , Universität Heidelberg (Autor:in)
  • Berit Zeller-Plumhoff - , Helmholtz-Zentrum Hereon (Autor:in)
  • Florian Rasch - , Christian-Albrechts-Universität zu Kiel (CAU) (Autor:in)
  • Mohammadreza Taale - , Universität Heidelberg (Autor:in)
  • Ali Shaygan Nia - , Professur für Molekulare Funktionsmaterialien (cfaed) (Autor:in)
  • Xinliang Feng - , Professur für Molekulare Funktionsmaterialien (cfaed) (Autor:in)
  • Rainer Adelung - , Christian-Albrechts-Universität zu Kiel (CAU) (Autor:in)
  • Rasmus R. Schröder - , Universität Heidelberg (Autor:in)
  • Fabian Schütt - , Christian-Albrechts-Universität zu Kiel (CAU) (Autor:in)
  • Christine Selhuber-Unkel - , Universität Heidelberg, Max Planck School Matter to Life (Autor:in)

Abstract

The fabrication of electrically conductive hydrogels is challenging as the introduction of an electrically conductive filler often changes mechanical hydrogel matrix properties. Here, we present an approach for the preparation of hydrogel composites with outstanding electrical conductivity at extremely low filler loadings (0.34 S m-1, 0.16 vol %). Exfoliated graphene and polyacrylamide are microengineered to 3D composites such that conductive graphene pathways pervade the hydrogel matrix similar to an artificial nervous system. This makes it possible to combine both the exceptional conductivity of exfoliated graphene and the adaptable mechanical properties of polyacrylamide. The demonstrated approach is highly versatile regarding porosity, filler material, as well as hydrogel system. The important difference to other approaches is that we keep the original properties of the matrix, while ensuring conductivity through graphene-coated microchannels. This novel approach of generating conductive hydrogels is very promising, with particular applications in the fields of bioelectronics and biohybrid robotics.

Details

OriginalspracheEnglisch
Seiten (von - bis)3690-3697
Seitenumfang8
FachzeitschriftNano letters
Jahrgang21
Ausgabenummer8
PublikationsstatusVeröffentlicht - 28 Apr. 2021
Peer-Review-StatusJa

Externe IDs

PubMed 33724848