Microbial Key Players Involved in P Turnover Differ in Artificial Soil Mixtures Depending on Clay Mineral Composition

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Irina Tanuwidjaja - , Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, University of Zagreb (Autor:in)
  • Cordula Vogel - , Professur für Bodenressourcen und Landnutzung, Technische Universität München (Autor:in)
  • Geertje J. Pronk - , Technische Universität München, KWR Watercycle Research Institute (Autor:in)
  • Anne Schöler - , Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (Autor:in)
  • Susanne Kublik - , Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (Autor:in)
  • Gisle Vestergaard - , Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Technical University of Denmark (Autor:in)
  • Ingrid Kögel-Knabner - , Technische Universität München (Autor:in)
  • Mirna Mrkonjic Fuka - , University of Zagreb (Autor:in)
  • Michael Schloter - , Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Technische Universität München (Autor:in)
  • Stefanie Schulz - , Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (Autor:in)

Abstract

Nutrient turnover in soils is strongly driven by soil properties, including clay mineral composition. One main nutrient is phosphorus (P), which is known to be easily immobilized in soil. Therefore, the specific surface characteristics of clay minerals might substantially influence P availability in soil and thus the microbial strategies for accessing P pools. We used a metagenomic approach to analyze the microbial potential to access P after 842 days of incubation in artificial soils with a clay mineral composition of either non-expandable illite (IL) or expandable montmorillonite (MT), which differ in their surface characteristics like soil surface area and surface charge. Our data indicate that microorganisms of the two soils developed different strategies to overcome P depletion, resulting in similar total P concentrations. Genes predicted to encode inorganic pyrophosphatase (ppa), exopolyphosphatase (ppx), and the pstSCAB transport system were higher in MT, suggesting effective P uptake and the use of internal poly-P stores. Genes predicted to encode enzymes involved in organic P turnover like alkaline phosphatases (phoA, phoD) and glycerophosphoryl diester phosphodiesterase were detected in both soils in comparable numbers. In addition, Po concentrations did not differ significantly. Most identified genes were assigned to microbial lineages generally abundant in agricultural fields, but some were assigned to lineages known to include oligotrophic specialists, such as Bacillaceae and Microchaetaceae.

Details

OriginalspracheEnglisch
Seiten (von - bis)897-907
Seitenumfang11
FachzeitschriftMicrobial Ecology
Jahrgang81
Ausgabenummer4
PublikationsstatusVeröffentlicht - Mai 2021
Peer-Review-StatusJa

Externe IDs

PubMed 33161521
ORCID /0000-0002-6525-2634/work/167215347

Schlagworte

Schlagwörter

  • Artificial soils, Bacterial P turnover, Exopolyphosphatase, Inorganic pyrophosphatase, Metagenomics