Method for Intra-Surgical Phase Detection by Using Real-Time Medical Device Data

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Norman Spangenberg - , Universität Leipzig (Autor:in)
  • Christoph Augenstein - , Universität Leipzig (Autor:in)
  • Bogdan Franczyk - , Universität Leipzig (Autor:in)
  • Martin Wagner - , Universitätsklinikum Heidelberg (Autor:in)
  • Martin Apitz - , Universität Heidelberg (Autor:in)
  • Hannes Kenngott - , Universität Heidelberg (Autor:in)

Abstract

The analysis of surgical activities became a popular field of research in recent years. Various methods had been published to detect surgical phases in various data sources in the operating room. Objective of this research is to develop a method for utilizing real-time information to extract surgical activities. In this work we use fine-grained data of surgical devices and operating room equipment which is produced permanently during surgeries. This low-level data help describing the current surgical phases and reflect real-time status of the endoscope, insufflator, electrosurgical devices and light sources. This is the basis for the development of a structured process to extract surgical phase recognition models. We show how to integrate expert knowledge and transfer this information into an automated and scalable information system for surgical phase recognition. The artifact is developed by adapting the method engineering methodology to find a best practice for utilizing fine-grained data for intrasurgical activity detection. We evaluated our approach with 15 data sets of laparoscopic surgeries and obtained an accuracy rate of about 83% with this approach.

Details

OriginalspracheEnglisch
TitelProceedings - 2017 IEEE 30th International Symposium on Computer-Based Medical Systems, CBMS 2017
Redakteure/-innenPanagiotis D. Bamidis, Stathis Th. Konstantinidis, Pedro Pereira Rodrigues
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten254-259
Seitenumfang6
ISBN (elektronisch)9781538617106
PublikationsstatusVeröffentlicht - 10 Nov. 2017
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

ReiheInternational Symposium on Computer-Based Medical Systems (CBMS)
Band2017-June
ISSN1063-7125

Konferenz

Titel30th IEEE International Symposium on Computer-Based Medical Systems, CBMS 2017
Dauer22 - 24 Juni 2017
StadtThessaloniki
LandGriechenland

Schlagworte

Schlagwörter

  • method engineering, surgical device data, surgical phase recognition