Metamodeling of a deep drawing process using conditional Generative Adversarial Networks

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Abstract

Optimization tasks as well as quality predictions for process control require fast responding process metamodels. A common strategy for sheet metal forming is building fast data driven metamodels based on results of Finite Element (FE) process simulations. However, FE simulations with complex material models and large parts with many elements consume extensive computational time. Hence, one major challenge in developing metamodels is to achieve a good prediction precision with limited data, while these predictions still need to be robust against varying input parameters. Therefore, the aim of this study was to evaluate if conditional Generative Adversarial Networks (cGAN) are applicable for predicting results of FE deep drawing simulations, since cGANs could achieve high performance in similar tasks in previous work. This involves investigations of the influence of data required to achieve a defined precision and to predict e.g. wrinkling phenomena. Results show that the cGAN used in this study was able to predict forming results with an averaged absolute deviation of sheet thickness of 0.025 mm, even when using a comparable small amount of data.

Details

OriginalspracheUndefiniert
Aufsatznummer012064
Seitenumfang9
FachzeitschriftIOP Conference Series: Materials Science and Engineering
Jahrgang1238
Ausgabenummer1
PublikationsstatusVeröffentlicht - 1 Mai 2022
Peer-Review-StatusJa

Externe IDs

Mendeley fc225448-8eff-3aee-897f-8d1ba979dd87
unpaywall 10.1088/1757-899x/1238/1/012064
WOS 000894042400064

Schlagworte

Forschungsprofillinien der TU Dresden

Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis

Schlagwörter

  • Neural-networks, Optimization, Prediction

Bibliotheksschlagworte