Metamodeling Lightweight Data Compression Algorithms and its Application Scenarios

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Lossless lightweight data compression is a very important optimization technique in various application domains like database systems, information retrieval or machine learning. Despite this importance, currently, there exists no comprehensive and non-Technical abstraction. To overcome this issue, we have developed a systematic approach using metamodeling that focuses on the non-Technical concepts of these algorithms. In this paper, we describe COLLATE, the metamodel we developed, and show that each algorithm can be described as a model conforming with COLLATE. Furthermore, we use COLLATE to specify a compression algorithm language COALA, so that lightweight data compression algorithms can be specified and modified in a descriptive and abstract way. Additionally, we present an approach to transform such descriptive algorithms into executable code. As we are going to show, our abstract and non-Technical approach offers several advantages.

Details

OriginalspracheEnglisch
TitelProceedings of the ER Forum 2017 and the ER 2017 Demo Track co-located with the 36th International Conference on Conceptual Modelling (ER 2017), Valencia, Spain, - November 6-9, 2017
Redakteure/-innenCristina Cabanillas, Sergio España, Siamak Farshidi
Seiten128-141
Seitenumfang14
PublikationsstatusVeröffentlicht - 2017
Peer-Review-StatusJa

Publikationsreihe

ReiheCEUR Workshop Proceedings
Band1979
ISSN1613-0073

Konferenz

TitelER Forum and the ER Demo Track, ER-Forum-Demos 2017
Dauer6 - 9 November 2017
StadtValencia
LandSpanien

Externe IDs

Scopus 85034960838
ORCID /0000-0001-8107-2775/work/142253410

Schlagworte

ASJC Scopus Sachgebiete