Metabolic state of human blastocysts measured by fluorescence lifetime imaging microscopy

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Marta Venturas - , Harvard University, Autonomous University of Barcelona (Autor:in)
  • Jaimin S. Shah - , Harvard University, Boston IVF (Autor:in)
  • Xingbo Yang - , Harvard University (Autor:in)
  • Tim H. Sanchez - , Harvard University (Autor:in)
  • William Conway - , Harvard University (Autor:in)
  • Denny Sakkas - , Boston IVF (Autor:in)
  • Dan J. Needleman - , Harvard University, Simons Foundation (Autor:in)

Abstract

STUDY QUESTION: Can non-invasive metabolic imaging via fluorescence lifetime imaging microscopy (FLIM) detect variations in metabolic profiles between discarded human blastocysts? SUMMARY ANSWER: FLIM revealed extensive variations in the metabolic state of discarded human blastocysts associated with blastocyst development over 36 h, the day after fertilization and blastocyst developmental stage, as well as metabolic heterogeneity within individual blastocysts. WHAT IS KNOWN ALREADY: Mammalian embryos undergo large changes in metabolism over the course of preimplantation development. Embryo metabolism has long been linked to embryo viability, suggesting its potential utility in ART to aid in selecting high quality embryos. However, the metabolism of human embryos remains poorly characterized due to a lack of non-invasive methods to measure their metabolic state. STUDY DESIGN, SIZE, DURATION: We conducted a prospective observational study. We used 215 morphologically normal human embryos from 137 patients that were discarded and donated for research under an approved institutional review board protocol. These embryos were imaged using metabolic imaging via FLIM to measure the autofluorescence of two central coenzymes, nicotinamide adenine (phosphate) dinucleotide (NAD(P)H) and flavine adenine dinucleotide (FAD+), which are essential for cellular respiration and glycolysis. PARTICIPANTS/MATERIALS, SETTING, METHODS: Here, we used non-invasive FLIM to measure the metabolic state of human blastocysts. We first studied spatial patterns in the metabolic state within human blastocysts and the association of the metabolic state of the whole blastocysts with stage of expansion, day of development since fertilization and morphology. We explored the sensitivity of this technique in detecting metabolic variations between blastocysts from the same patient and between patients. Next, we explored whether FLIM can quantitatively measure metabolic changes through human blastocyst expansion and hatching via time-lapse imaging. For all test conditions, the level of significance was set at P < 0.05 after correction for multiple comparisons using Benjamini-Hochberg's false discovery rate. MAIN RESULTS AND THE ROLE OF CHANCE: We found that FLIM is sensitive enough to detect significant metabolic differences between blastocysts. We found that metabolic variations between blastocyst are partially explained by both the time since fertilization and their developmental expansion stage (P < 0.05), but not their morphological grade. Substantial metabolic variations between blastocysts from the same patients remain, even after controlling for these factors. We also observe significant metabolic heterogeneity within individual blastocysts, including between the inner cell mass and the trophectoderm, and between the portions of hatching blastocysts within and without the zona pellucida (P < 0.05). And finally, we observed that the metabolic state of human blastocysts continuously varies over time. LIMITATIONS, REASONS FOR CAUTION: Although we observed significant variations in metabolic parameters, our data are taken from human blastocysts that were discarded and donated for research and we do not know their clinical outcome. Moreover, the embryos used in this study are a mixture of aneuploid, euploid and embryos of unknown ploidy. WIDER IMPLICATIONS OF THE FINDINGS: This work reveals novel aspects of the metabolism of human blastocysts and suggests that FLIM is a promising approach to assess embryo viability through non-invasive, quantitative measurements of their metabolism. These results further demonstrate that FLIM can provide biologically relevant information that may be valuable for the assessment of embryo quality. STUDY FUNDING/COMPETING INTEREST(S): Supported by the Blavatnik Biomedical Accelerator Grant at Harvard University. Becker and Hickl GmbH and Boston Electronics sponsored research with the loaning of equipment for FLIM. D.J.N. is an inventor on patent US20170039415A1. TRIAL REGISTRATION NUMBER: N/A.

Details

OriginalspracheEnglisch
Seiten (von - bis)411-427
Seitenumfang17
FachzeitschriftHuman reproduction
Jahrgang37
Ausgabenummer3
Frühes Online-Datum6 Jan. 2022
PublikationsstatusVeröffentlicht - März 2022
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 34999823

Schlagworte

Ziele für nachhaltige Entwicklung

Schlagwörter

  • embryo assessment, embryo development, fluorescence lifetime imaging microscopy, human blastocysts, metabolism, non-invasive