Memlumor: A Luminescent Memory Device for Energy-Efficient Photonic Neuromorphic Computing

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Alexandr Marunchenko - , Lund University, St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO) (Autor:in)
  • Jitendra Kumar - , Lund University (Autor:in)
  • Alexander Kiligaridis - , Lund University (Autor:in)
  • Dmitry Tatarinov - , St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO) (Autor:in)
  • Anatoly Pushkarev - , St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO) (Autor:in)
  • Yana Vaynzof - , Professur für Neuartige Elektroniktechnologien (gB/IFW und cfaed), Leibniz Institute for Solid State and Materials Research Dresden (Autor:in)
  • Ivan G. Scheblykin - , Lund University (Autor:in)

Abstract

Neuromorphic computing promises to transform the current paradigm of traditional computing toward non-von Neumann dynamic energy-efficient problem solving. To realize this, a neuromorphic platform must possess intrinsic complexity reflected in the built-in diversity of its physical operation mechanisms. We propose and demonstrate the concept of a memlumor, an all-photonic device combining memory and a luminophore, and being mathematically a full equivalence of the electrically driven memristor. Using CsPbBr3 perovskites as a material platform, we demonstrate the synergetic coexistence of memory effects within a broad time scale from nanoseconds to minutes and switching energy down to 3.5 fJ. We elucidate the origin of such a complex response to be related to the phenomena of photodoping and photochemistry activated by a tunable light input. When the existence of a history-dependent photoluminescence quantum yield is leveraged in various material platforms, the memlumor device concept will trigger multiple new research directions in both material science and photonics.

Details

OriginalspracheEnglisch
Seiten (von - bis)2075-2082
Seitenumfang8
FachzeitschriftACS energy letters
Jahrgang9
Ausgabenummer5
PublikationsstatusVeröffentlicht - 10 Mai 2024
Peer-Review-StatusJa