Membrane prewetting by condensates promotes tight-junction belt formation

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Karina Pombo-García - , Max Planck Institute of Molecular Cell Biology and Genetics, Rosalind Franklin Institute (Autor:in)
  • Omar Adame-Arana - , Max-Planck-Institut für Physik komplexer Systeme (Autor:in)
  • Cecilie Martin-Lemaitre - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Frank Jülicher - , Max-Planck-Institut für Physik komplexer Systeme, Zentrum für Systembiologie Dresden (CSBD), Technische Universität Dresden (Autor:in)
  • Alf Honigmann - , Biotechnologisches Zentrum (BIOTEC), Exzellenzcluster PoL: Physik des Lebens, Professur für Biophysik, Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)

Abstract

Biomolecular condensates enable cell compartmentalization by acting as membraneless organelles1. How cells control the interactions of condensates with other cellular structures such as membranes to drive morphological transitions remains poorly understood. We discovered that formation of a tight-junction belt, which is essential for sealing epithelial tissues, is driven by a wetting phenomenon that promotes the growth of a condensed ZO-1 layer2 around the apical membrane interface. Using temporal proximity proteomics in combination with imaging and thermodynamic theory, we found that the polarity protein PATJ mediates a transition of ZO-1 into a condensed surface layer that elongates around the apical interface. In line with the experimental observations, our theory of condensate growth shows that the speed of elongation depends on the binding affinity of ZO-1 to the apical interface and is constant. Here, using PATJ mutations, we show that ZO-1 interface binding is necessary and sufficient for tight-junction belt formation. Our results demonstrate how cells exploit the collective biophysical properties of protein condensates at membrane interfaces to shape mesoscale structures.

Details

OriginalspracheEnglisch
Seiten (von - bis)647-655
Seitenumfang9
FachzeitschriftNature
Jahrgang632
Ausgabenummer8025
PublikationsstatusVeröffentlicht - 15 Aug. 2024
Peer-Review-StatusJa

Externe IDs

PubMed 39112699
ORCID /0000-0003-0475-3790/work/166324049

Schlagworte

ASJC Scopus Sachgebiete