Mechanisms of backtrack recovery by RNA polymerases i and II

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Ana Lisica - , Professur für Biophysik, Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Christoph Engel - , Max Planck Institute for Biophysical Chemistry (Karl Friedrich Bonhoeffer Institute) (Autor:in)
  • Marcus Jahnel - , Professur für Biophysik, Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Édgar Roldán - , Max-Planck-Institute for the Physics of Complex Systems, Technische Universität Dresden, Universidad Carlos III de Madrid (Autor:in)
  • Eric A. Galburt - , Washington University St. Louis (Autor:in)
  • Patrick Cramer - , Max Planck Institute for Biophysical Chemistry (Karl Friedrich Bonhoeffer Institute) (Autor:in)
  • Stephan W. Grill - , Professur für Biophysik, Max Planck Institute of Molecular Cell Biology and Genetics, Max-Planck-Institute for the Physics of Complex Systems (Autor:in)

Abstract

During DNA transcription, RNA polymerases often adopt inactive backtracked states. Recovery from backtracks can occur by 1D diffusion or cleavage of backtracked RNA, but how polymerases make this choice is unknown. Here, we use single-molecule optical tweezers experiments and stochastic theory to show that the choice of a backtrack recovery mechanism is determined by a kinetic competition between 1D diffusion and RNA cleavage. Notably, RNA polymerase I (Pol I) and Pol II recover from shallow backtracks by 1D diffusion, use RNA cleavage to recover from intermediary depths, and are unable to recover from extensive backtracks. Furthermore, Pol I and Pol II use distinct mechanisms to avoid nonrecoverable backtracking. Pol I is protected by its subunit A12.2, which decreases the rate of 1D diffusion and enables transcript cleavage up to 20 nt. In contrast, Pol II is fully protected through association with the cleavage stimulatory factor TFIIS, which enables rapid recovery from any depth by RNA cleavage. Taken together, we identify distinct backtrack recovery strategies of Pol I and Pol II, shedding light on the evolution of cellular functions of these key enzymes.

Details

OriginalspracheEnglisch
Seiten (von - bis)2946-2951
Seitenumfang6
FachzeitschriftProceedings of the National Academy of Sciences of the United States of America
Jahrgang113
Ausgabenummer11
PublikationsstatusVeröffentlicht - 15 März 2016
Peer-Review-StatusJa

Externe IDs

PubMed 26929337

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Backtracking, Optical tweezers, Pol I, Pol II, Transcription