Mechanism of Antiferroelectricity in Polycrystalline ZrO2

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Richard Ganser - , Hochschule für angewandte Wissenschaften München (Autor:in)
  • Patrick D. Lomenzo - , NaMLab - Nanoelectronic materials laboratory gGmbH (Autor:in)
  • Liam Collins - , Oak Ridge National Laboratory (Autor:in)
  • Bohan Xu - , NaMLab - Nanoelectronic materials laboratory gGmbH (Autor:in)
  • Luis Azevedo Antunes - , Hochschule für angewandte Wissenschaften München (Autor:in)
  • Thomas Mikolajick - , Professur für Nanoelektronik, NaMLab - Nanoelectronic materials laboratory gGmbH, Technische Universität Dresden (Autor:in)
  • Uwe Schroeder - , NaMLab - Nanoelectronic materials laboratory gGmbH (Autor:in)
  • Alfred Kersch - , Hochschule für angewandte Wissenschaften München (Autor:in)

Abstract

The size and electric field dependent induction of polarization in antiferroelectric ZrO2 is the key to several technological applications that are unimaginable a decade ago. However, the lack of a deeper understanding of the mechanism hinders progress. Molecular dynamics simulations of polycrystalline ZrO2, based on machine-learned interatomic forces with near ab initio quality, shed light on the fundamental mechanism of the size effect on the transition fields. Stress in the oxygen sublattice is the most important factor. The so constructed interatomic forces allow the calculation of the transition fields as a function of the ZrO2 film thickness and predict the ferroelectricity at large thickness. The simulation results are validated with electrical and piezo response force microscopy measurements. The results allow a clear interpretation of the properties of the double-hysteresis loops as well as the construction of the free energy landscape of ZrO2 grains.

Details

OriginalspracheEnglisch
FachzeitschriftAdvanced functional materials
PublikationsstatusAngenommen/Im Druck - 2024
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • ferroelectricity, interfacial layer, phase transition, thin film, transition field, zirconia