Mechanically Defined Microgels by Droplet Microfluidics

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Thomas Heida - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Jens W. Neubauer - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Maximilian Seuss - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Nicolas Hauck - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Julian Thiele - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Andreas Fery - , Professur für Physikalische Chemie polymerer Materialien (gB/IPF) (PC5), Leibniz-Institut für Polymerforschung Dresden (Autor:in)

Abstract

Over the last two decades, droplet-based microfluidics has evolved into a versatile tool for fabricating tailored micrometer-sized hydrogel particles. Combining precise fluid handling down to femtoliter scale with diverse hydrogel precursor design, it allows for excellent control over microgel size and shape, but also functionalization and crosslinking density. Consequently, it is possible to tune physicochemical and mechanical properties such as swelling, degradation, stimuli sensitivity, and elasticity by microfluidic droplet templates. This has led to a recent trend in applying microgels as experimental platform in cell culturing, drug delivery, sensing, and tissue engineering. This article highlights advances in microfluidic droplet formation as templates for microgels with tailored physicochemical properties. Special focus is put on evolving design strategies for the synthesis of mechanically defined microgels, their applications, and methods for mechanical characterization on single-particle level. (Figure presented.).

Details

OriginalspracheEnglisch
Aufsatznummer1600418
FachzeitschriftMacromolecular chemistry and physics : MCP
Jahrgang218
Ausgabenummer2
PublikationsstatusVeröffentlicht - 1 Jan. 2017
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • atomic force microscopy (AFM), deformation measurements, droplet microfluidics, mechanics, microgels