Measurement invariance in the social sciences: Historical development, methodological challenges, state of the art, and future perspectives

Publikation: Beitrag in FachzeitschriftÜbersichtsartikel (Review)BeigetragenBegutachtung

Beitragende

  • Heinz Leitgöb - , Universität Leipzig, Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • Daniel Seddig - , Universität zu Köln, Westfälische Wilhelms-Universität Münster (Autor:in)
  • Tihomir Asparouhov - , Mplus, USA (Autor:in)
  • Dorothée Behr - , GESIS – Leibniz-Institut für Sozialwissenschaften (Autor:in)
  • Eldad Davidov - , Universität zu Köln, Universität Zürich (Autor:in)
  • Kim De Roover - , Tilburg University, KU Leuven (Autor:in)
  • Suzanne Jak - , Amsterdam University Medical Centers (UMC) (Autor:in)
  • Katharina Meitinger - , Utrecht University (Autor:in)
  • Natalja Menold - , Professur für Methoden der empirischen Sozialforschung (Autor:in)
  • Bengt Muthén - , University of California at Los Angeles, Mplus, USA (Autor:in)
  • Maksim Rudnev - , University of Waterloo (Autor:in)
  • Peter Schmidt - , Johannes Gutenberg-Universität Mainz, Justus-Liebig-Universität Gießen (Autor:in)
  • Rens van de Schoot - , Utrecht University (Autor:in)

Abstract

This review summarizes the current state of the art of statistical and (survey) methodological research on measurement (non)invariance, which is considered a core challenge for the comparative social sciences. After outlining the historical roots, conceptual details, and standard procedures for measurement invariance testing, the paper focuses in particular on the statistical developments that have been achieved in the last 10 years. These include Bayesian approximate measurement invariance, the alignment method, measurement invariance testing within the multilevel modeling framework, mixture multigroup factor analysis, the measurement invariance explorer, and the response shift-true change decomposition approach. Furthermore, the contribution of survey methodological research to the construction of invariant measurement instruments is explicitly addressed and highlighted, including the issues of design decisions, pretesting, scale adoption, and translation. The paper ends with an outlook on future research perspectives.

Details

OriginalspracheEnglisch
Aufsatznummer102805
FachzeitschriftSocial science research : a quarterly journal of social science methodology and quantitative research
Jahrgang110
PublikationsstatusVeröffentlicht - Feb. 2023
Peer-Review-StatusJa

Externe IDs

Scopus 85140981140
ORCID /0000-0003-1106-474X/work/194256565

Schlagworte

Schlagwörter

  • Bayes Theorem, Factor Analysis, Statistical, Humans, Research Design, Social Sciences, Surveys and Questionnaires