MEA-seqX: High-Resolution Profiling of Large-Scale Electrophysiological and Transcriptional Network Dynamics

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Brett Addison Emery - , Professur für Regenerationsgenomik, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) - Standort Dresden (Autor:in)
  • Xin Hu - , Professur für Regenerationsgenomik, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) - Standort Dresden (Autor:in)
  • Diana Klütsch - , Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (Autor:in)
  • Shahrukh Khanzada - , Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (Autor:in)
  • Ludvig Larsson - , KTH Royal Institute of Technology (Autor:in)
  • Ionut Dumitru - , Karolinska Institutet (Autor:in)
  • Jonas Frisén - , Karolinska Institutet (Autor:in)
  • Joakim Lundeberg - , KTH Royal Institute of Technology (Autor:in)
  • Gerd Kempermann - , Professur für Regenerationsgenomik, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) - Standort Dresden (Autor:in)
  • Hayder Amin - , Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) , Medizinische Fakultät Carl Gustav Carus Dresden (Autor:in)

Abstract

Concepts of brain function imply congruence and mutual causal influence between molecular events and neuronal activity. Decoding entangled information from concurrent molecular and electrophysiological network events demands innovative methodology bridging scales and modalities. The MEA-seqX platform, integrating high-density microelectrode arrays, spatial transcriptomics, optical imaging, and advanced computational strategies, enables the simultaneous recording and analysis of molecular and electrical network activities at mesoscale spatial resolution. Applied to a mouse hippocampal model of experience-dependent plasticity, MEA-seqX unveils massively enhanced nested dynamics between transcription and function. Graph–theoretic analysis reveals an increase in densely connected bimodal hubs, marking the first observation of coordinated hippocampal circuitry dynamics at molecular and functional levels. This platform also identifies different cell types based on their distinct bimodal profiles. Machine-learning algorithms accurately predict network-wide electrophysiological activity features from spatial gene expression, demonstrating a previously inaccessible convergence across modalities, time, and scales.

Details

OriginalspracheEnglisch
Aufsatznummer2412373
FachzeitschriftAdvanced science
Jahrgang12
Ausgabenummer20
PublikationsstatusVeröffentlicht - 29 Mai 2025
Peer-Review-StatusJa

Externe IDs

PubMed 40304297
ORCID /0000-0002-5304-4061/work/191041499
ORCID /0000-0001-9614-4567/work/191041707

Schlagworte

Schlagwörter

  • AI machine-learning, connectome, experience-dependent plasticity, large-scale neural recordings, predictive modeling, spatial transcriptomics, spatiotemporal dynamics