Maximum-Likelihood Estimation Using the Zig-Zag Algorithm

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We analyze the properties of the Maximum Likelihood (ML) estimator when the underlying log-likelihood function is numerically maximized with the so-called zig-zag algorithm. By splitting the parameter vector into sub-vectors, the algorithm maximizes the log-likelihood function alternatingly with respect to one sub-vector while keeping the others constant. For situations when the algorithm is initialized with a consistent estimator and is iterated sufficiently often, we establish the asymptotic equivalence of the zig-zag estimator and the "infeasible"ML estimator being numerically approximated. This result gives guidance for practical implementations. We illustrate how to employ the algorithm in different estimation problems, such as in a vine copula model and a vector autoregressive moving average model. The accuracy of the estimator is illustrated through simulations. Finally, we demonstrate the usefulness of our results in an application, where the Bitcoin heating 2017 is analyzed by a dynamic conditional correlation model.

Details

OriginalspracheEnglisch
Seiten (von - bis)1346-1375
Seitenumfang30
FachzeitschriftJournal of financial econometrics
Jahrgang21 (2023)
Ausgabenummer4
PublikationsstatusVeröffentlicht - 1 Apr. 2022
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-8909-4861/work/149081751

Schlagworte

Schlagwörter

  • Bitcoin, C13, C50, dynamic conditional correlation, efficient estimation, Gauß-Seidel, iterative estimation, maximization by parts, vector autoregressive moving average, vine copula

Bibliotheksschlagworte