Maximal asymptotic power and efficiency of two-sample tests based on generalized U-Statistics
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
In this article a systematic study is given of the asymptotic behavior of two-sample tests based on U-Statistics with arbitrary antisymmetric kernels ψ. Besides the investigation under the hypothesis and under fixed alternatives we determine the local power as a function of ψ as well as its maximizing value ψopt. Moreover formulas for the asymptotic relative efficiency ARE(ψ2, ψ1) of the ψ2-test with respect to the ψ1-test are derived. It turns out that ψopt also yields the most efficient test in the sense that ARE(ψopt, ψ) ≤ 1 for all (admissible) kernels ψ.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 33-57 |
Seitenumfang | 25 |
Fachzeitschrift | Metrika |
Jahrgang | 60 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 2004 |
Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Maximal local power, Optimal asymptotic relative efficiency, Statistical functionals, Two-sample U-Statistics