MarrowQuant 2.0: A Digital Pathology Workflow Assisting Bone Marrow Evaluation in Experimental and Clinical Hematology

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Rita Sarkis - , École Polytechnique Fédérale de Lausanne, Université de Lausanne (Autor:in)
  • Olivier Burri - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Claire Royer-Chardon - , Centre Hospitalier Universitaire Vaudois (CHUV) (Autor:in)
  • Frédérica Schyrr - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Sophie Blum - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Mariangela Costanza - , Centre Hospitalier Universitaire Vaudois (CHUV) (Autor:in)
  • Stephane Cherix - , Centre Hospitalier Universitaire Vaudois (CHUV) (Autor:in)
  • Nathalie Piazzon - , Centre Hospitalier Universitaire Vaudois (CHUV) (Autor:in)
  • Carmen Barcena - , Centre Hospitalier Universitaire Vaudois (CHUV), Hospital Universitario 12 de Octubre (Autor:in)
  • Bettina Bisig - , Centre Hospitalier Universitaire Vaudois (CHUV) (Autor:in)
  • Valentina Nardi - , Boston Children's Hospital (Autor:in)
  • Rossella Sarro - , École Polytechnique Fédérale de Lausanne, Ente Ospedaliero Cantonale (EOC) (Autor:in)
  • Giovanna Ambrosini - , Bioinformatics Competence Center (BICC), UNIL/EPFL (Autor:in)
  • Martin Weigert - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Olivier Spertini - , Centre Hospitalier Universitaire Vaudois (CHUV) (Autor:in)
  • Sabine Blum - , Centre Hospitalier Universitaire Vaudois (CHUV) (Autor:in)
  • Bart Deplancke - , École Polytechnique Fédérale de Lausanne, Swiss Institute of Bioinformatics (SIB) (Autor:in)
  • Arne Seitz - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Laurence de Leval - , Centre Hospitalier Universitaire Vaudois (CHUV) (Autor:in)
  • Olaia Naveiras - , École Polytechnique Fédérale de Lausanne, Centre Hospitalier Universitaire Vaudois (CHUV), Université de Lausanne (Autor:in)

Abstract

Bone marrow (BM) cellularity assessment is a crucial step in the evaluation of BM trephine biopsies for hematologic and nonhematologic disorders. Clinical assessment is based on a semiquantitative visual estimation of the hematopoietic and adipocytic components by hematopathologists, which does not provide quantitative information on other stromal compartments. In this study, we developed and validated MarrowQuant 2.0, an efficient, user-friendly digital hematopathology workflow integrated within QuPath software, which serves as BM quantifier for 5 mutually exclusive compartments (bone, hematopoietic, adipocytic, and interstitial/microvasculature areas and other) and derives the cellularity of human BM trephine biopsies. Instance segmentation of individual adipocytes is realized through the adaptation of the machine-learning-based algorithm StarDist. We calculated BM compartments and adipocyte size distributions of hematoxylin and eosin images obtained from 250 bone specimens, from control subjects and patients with acute myeloid leukemia or myelodysplastic syndrome, at diagnosis and follow-up, and measured the agreement of cellularity estimates by MarrowQuant 2.0 against visual scores from 4 hematopathologists. The algorithm was capable of robust BM compartment segmentation with an average mask accuracy of 86%, maximal for bone (99%), hematopoietic (92%), and adipocyte (98%) areas. MarrowQuant 2.0 cellularity score and hematopathologist estimations were highly correlated (R2 = 0.92-0.98, intraclass correlation coefficient [ICC] = 0.98; interobserver ICC = 0.96). BM compartment segmentation quantitatively confirmed the reciprocity of the hematopoietic and adipocytic compartments. MarrowQuant 2.0 performance was additionally tested for cellularity assessment of specimens prospectively collected from clinical routine diagnosis. After special consideration for the choice of the cellularity equation in specimens with expanded stroma, performance was similar in this setting (R2 = 0.86, n = 42). Thus, we conclude that these validation experiments establish MarrowQuant 2.0 as a reliable tool for BM cellularity assessment. We expect this workflow will serve as a clinical research tool to explore novel biomarkers related to BM stromal components and may contribute to further validation of future digitalized diagnostic hematopathology workstreams.

Details

OriginalspracheEnglisch
Aufsatznummer100088
FachzeitschriftModern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
Jahrgang36
Ausgabenummer4
PublikationsstatusVeröffentlicht - Apr. 2023
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

Scopus 85153550786
ORCID /0000-0002-7780-9057/work/176863461

Schlagworte

Schlagwörter

  • Bone Marrow Cells/pathology, Bone Marrow Examination, Bone Marrow/pathology, Hematology, Humans, Workflow