Magnetoconductance modulations due to interlayer tunneling in radial superlattices

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Yu Jie Zhong - , National Cheng Kung University (Autor:in)
  • Angus Huang - , National Cheng Kung University, National Tsing Hua University (Autor:in)
  • Hui Liu - , Exzellenzcluster ct.qmat: Komplexität und Topologie in Quantenmaterialien, Professur für Festkörpertheorie (gB/IFW), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Xuan Fu Huang - , National Cheng Kung University (Autor:in)
  • Horng Tay Jeng - , National Tsing Hua University, Academia Sinica - Institute of Physics (Autor:in)
  • Jhih Shih You - , National Taiwan Normal University (Autor:in)
  • Carmine Ortix - , Utrecht University, University of Salerno (Autor:in)
  • Ching Hao Chang - , National Cheng Kung University (Autor:in)

Abstract

Radial superlattices are nanostructured materials obtained by rolling up thin solid films into spiral-like tubular structures. The formation of these "high-order"superlattices from two-dimensional crystals or ultrathin films is expected to result in a transition of transport characteristics from two-dimensional to one-dimensional. Here, we show that a transport hallmark of radial superlattices is the appearance of magnetoconductance modulations in the presence of externally applied axial magnetic fields. This phenomenon critically relies on electronic interlayer tunneling processes that activate an unconventional Aharonov-Bohm-like effect. Using a combination of density functional theory calculations and low-energy continuum models, we determine the electronic states of a paradigmatic single-material radial superlattice-a two-winding carbon nanoscroll-and indeed show momentum-dependent oscillations of the magnetic states in the axial configuration, which we demonstrate to be entirely due to hopping between the two windings of the spiral-shaped scroll.

Details

OriginalspracheEnglisch
Seiten (von - bis)168-173
Seitenumfang6
FachzeitschriftNanoscale Horizons
Jahrgang2022
Ausgabenummer7(2)
Frühes Online-Datum10 Dez. 2021
PublikationsstatusVeröffentlicht - 1 Feb. 2022
Peer-Review-StatusJa

Externe IDs

PubMed 34982086

Schlagworte

ASJC Scopus Sachgebiete

Bibliotheksschlagworte