Magnetism, heat capacity, and electronic structure of EuCd2 P2 in view of its colossal magnetoresistance

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Dmitry Yu Usachov - , St. Petersburg State University, Moscow Institute of Physics and Technology, National University of Science and Technology "MISiS" (Autor:in)
  • Sarah Krebber - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • Kirill A. Bokai - , St. Petersburg State University, Moscow Institute of Physics and Technology (Autor:in)
  • Artem V. Tarasov - , St. Petersburg State University, Moscow Institute of Physics and Technology (Autor:in)
  • Marvin Kopp - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • Charu Garg - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • Alexander Virovets - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • Jens Müller - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • Max Mende - , Institut für Festkörper- und Materialphysik, Technische Universität Dresden (Autor:in)
  • Georg Poelchen - , Professur für Oberflächenphysik, Technische Universität Dresden (Autor:in)
  • Denis V. Vyalikh - , Donostia International Physics Center, Ikerbasque Basque Foundation for Science (Autor:in)
  • Cornelius Krellner - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • Kristin Kliemt - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)

Abstract

The mechanism of the peculiar transport properties around the magnetic ordering temperature of semiconducting antiferromagnetic EuCd2P2 is not yet understood. With a huge peak in the resistivity observed above the Néel temperature TN=10.6K, it exhibits a colossal magnetoresistance effect. Recent reports on observations of ferromagnetic contributions above TN as well as metallic behavior below this temperature have motivated us to perform a comprehensive characterization of this material, including its resistivity, heat capacity, magnetic properties, and electronic structure. Our transport measurements revealed quite different temperature dependence of resistivity with the maximum at 14 K instead of previously reported 18 K. Low-field susceptibility data support the presence of static ferromagnetism above TN and show a complex behavior of the material at small applied magnetic fields. Namely, signatures of reorientation of magnetic domains are observed up to T=16 K. Our magnetization measurements indicate a magnetocrystalline anisotropy which also leads to a preferred alignment of the magnetic clusters above TN. The momentum-resolved photoemission experiments at temperatures from 24 down to 2.5 K indicate the permanent presence of a fundamental band gap without change of the electronic structure when going through TN that is in contradiction with previous results. We performed ab initio band structure calculations which are in good agreement with the measured photoemission data when assuming an antiferromagnetic ground state. Calculations for the ferromagnetic phase show a much smaller band gap, indicating the importance of possible ferromagnetic contributions for the explanation of the colossal magnetoresistance effect in the related EuZn2P2.

Details

OriginalspracheEnglisch
Aufsatznummer104421
FachzeitschriftPhysical Review B
Jahrgang109
Ausgabenummer10
PublikationsstatusVeröffentlicht - 1 März 2024
Peer-Review-StatusJa