Magnetic domain engineering in antiferromagnetic CuMnAs and Mn 2 Au

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Sonka Reimers - , University of Nottingham, Johannes Gutenberg-Universität Mainz, Diamond Light Source (Autor:in)
  • Olena Gomonay - , Johannes Gutenberg-Universität Mainz (Autor:in)
  • Oliver J. Amin - , University of Nottingham (Autor:in)
  • Filip Krizek - , Czech Academy of Sciences (Autor:in)
  • Luke X. Barton - , University of Nottingham (Autor:in)
  • Yaryna Lytvynenko - , Johannes Gutenberg-Universität Mainz, NASU - Institute of Magnetism of NAS and MES of Ukraine (Autor:in)
  • Stuart F. Poole - , University of Nottingham (Autor:in)
  • Vit Novák - , Czech Academy of Sciences (Autor:in)
  • Richard P. Campion - , University of Nottingham (Autor:in)
  • Francesco Maccherozzi - , Diamond Light Source (Autor:in)
  • Gerardina Carbone - , Lund University (Autor:in)
  • Alexander Björling - , Lund University (Autor:in)
  • Yuran Niu - , Lund University (Autor:in)
  • Evangelos Golias - , Lund University (Autor:in)
  • Dominik Kriegner - , Professur für Theoretische Festkörperphysik, Czech Academy of Sciences, Technische Universität Dresden (Autor:in)
  • Jairo Sinova - , Johannes Gutenberg-Universität Mainz (Autor:in)
  • Mathias Kläui - , Johannes Gutenberg-Universität Mainz, Norwegian University of Science and Technology (Autor:in)
  • Martin Jourdan - , Johannes Gutenberg-Universität Mainz (Autor:in)
  • Sarnjeet S. Dhesi - , Diamond Light Source (Autor:in)
  • Kevin W. Edmonds - , University of Nottingham (Autor:in)
  • Peter Wadley - , University of Nottingham (Autor:in)

Abstract

Antiferromagnetic materials hold potential for use in spintronic devices with fast operation frequencies and field robustness. Despite the rapid progress in proof-of-principle functionality in recent years, there has been a notable lack of understanding of antiferromagnetic domain formation and manipulation, which translates to either incomplete or nonscalable control of the magnetic order. Here, we demonstrate simple and functional ways of influencing the domain structure in CuMnAs and Mn2Au, two key materials of antiferromagnetic spintronics research, using device patterning and strain engineering. Comparing x-ray microscopy data from two different materials, we reveal the key parameters dictating domain formation in antiferromagnetic devices and show how the nontrivial interaction of magnetostriction, substrate clamping, and edge anisotropy leads to specific equilibrium domain configurations. More specifically, we observe that patterned edges have a significant impact on the magnetic anisotropy and domain structure over long distances and we propose a theoretical model that relates short-range edge anisotropy and long-range magnetoelastic interactions. The principles invoked are of general applicability to the domain formation and engineering in antiferromagnetic thin films at large, which will hopefully pave the way toward realizing truly functional antiferromagnetic devices.

Details

OriginalspracheEnglisch
Aufsatznummer064030
FachzeitschriftPhysical review applied
Jahrgang21
Ausgabenummer6
PublikationsstatusVeröffentlicht - Juni 2024
Peer-Review-StatusJa

Schlagworte

ASJC Scopus Sachgebiete