Machine Learning-Based Dynamic Modeling of Ball Joint Friction for Real-Time Applications

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Kai Pfitzer - , Professur für Kraftfahrzeugtechnik, BMW Group (Autor:in)
  • Lucas Rath - , BMW Group, Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Sebastian Kolmeder - , BMW Group (Autor:in)
  • Burkhard Corves - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Günther Prokop - , Professur für Kraftfahrzeugtechnik (Autor:in)

Abstract

Ball joints are components of the vehicle axle, and their friction characteristics must be considered when evaluating vibration behavior and ride comfort in driving simulator-based simulations. To model the three-dimensional friction behavior of ball joints, real-time capability and intuitive parameterization using data from standardized component test benches are essential. These requirements favor phenomenological modeling approaches. This paper applies a spherical, three-dimensional friction model based on the LuGre model, compares it with alternative approaches, and introduces a universal parameter estimation framework using machine learning. Furthermore, the kinematic operating ranges of ball joints are derived from vehicle measurements, and component-level measurements are conducted accordingly. The collected measurement data are used to estimate model parameters through gradient-based optimization for all considered models. The results of the model fitting are presented, and the model characteristics are discussed in the context of their suitability for online simulation in a driving simulator environment. We demonstrate that the proposed parameter estimation framework is capable of learning all the applied models. Moreover, the three-dimensional LuGre-based approach proves to be well suited for capturing the dynamic friction behavior of ball joints in real-time applications.

Details

OriginalspracheEnglisch
Aufsatznummer436
Seitenumfang38
FachzeitschriftLubricants
Jahrgang13
Ausgabenummer10
PublikationsstatusVeröffentlicht - Okt. 2025
Peer-Review-StatusJa

Externe IDs

WOS 001603048500001
ORCID /0000-0002-0679-0766/work/199215955

Schlagworte

Schlagwörter

  • ball joint friction, driving simulation, gradient-based optimization, LSTM, LuGre model, multidimensional friction model