Machine Learning in Human Olfactory Research

Publikation: Beitrag in FachzeitschriftÜbersichtsartikel (Review)BeigetragenBegutachtung

Beitragende

  • Jörn Lötsch - , Johann Wolfgang Goethe-Universität Frankfurt am Main, Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie (Autor:in)
  • Dario Kringel - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • Thomas Hummel - , Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde, Universitätsklinikum Carl Gustav Carus Dresden (Autor:in)

Abstract

The complexity of the human sense of smell is increasingly reflected in complex and high-dimensional data, which opens opportunities for data-driven approaches that complement hypothesis-driven research. Contemporary developments in computational and data science, with its currently most popular implementation as machine learning, facilitate complex data-driven research approaches. The use of machine learning in human olfactory research included major approaches comprising 1) the study of the physiology of pattern-based odor detection and recognition processes, 2) pattern recognition in olfactory phenotypes, 3) the development of complex disease biomarkers including olfactory features, 4) odor prediction from physico-chemical properties of volatile molecules, and 5) knowledge discovery in publicly available big databases. A limited set of unsupervised and supervised machine-learned methods has been used in these projects, however, the increasing use of contemporary methods of computational science is reflected in a growing number of reports employing machine learning for human olfactory research. This review provides key concepts of machine learning and summarizes current applications on human olfactory data.

Details

OriginalspracheEnglisch
Seiten (von - bis)11-22
Seitenumfang12
FachzeitschriftChemical senses
Jahrgang44
Ausgabenummer1
PublikationsstatusVeröffentlicht - 1 Jan. 2019
Peer-Review-StatusJa

Externe IDs

PubMed 30371751
ORCID /0000-0001-9713-0183/work/152545967

Schlagworte

Ziele für nachhaltige Entwicklung

Schlagwörter

  • bioinformatics, data science, data-driven research, human olfaction, machine learning