Machine Learning driven Optimization of Overhead Hoist Transport System Control in Semiconductor Industry
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Automated material handling systems (AMHS) are essential for industrial semiconductor production in modern front-end facilities. The control of these systems has a significant impact on ensuring a reliable supply of production resources. Allocating transportation tasks to vehicles in real time is of great importance here, as it represents a computational challenge and has a major impact on the performance of the transportation system (see Wu et al., 2019). Achieving the best possible operation is the subject of numerous research activities (see De Ryck et al., 2020).
Machine learning approaches enable new ways of developing control strategies to achieve higher system performance (see Bai et al., 2023). Our paper provides two examples of how machine learning can be applied to improve task assignment for empty vehicles.
Machine learning approaches enable new ways of developing control strategies to achieve higher system performance (see Bai et al., 2023). Our paper provides two examples of how machine learning can be applied to improve task assignment for empty vehicles.
Details
Originalsprache | Englisch |
---|---|
Titel | 22nd European Advanced Process Control and Manufacturing Conference (apc|m) |
Seiten | 1-7 |
Seitenumfang | 7 |
Publikationsstatus | Veröffentlicht - 16 Apr. 2024 |
Peer-Review-Status | Ja |
Konferenz
Titel | 22nd European Advanced Process Control and Manufacturing Conference |
---|---|
Kurztitel | apc|m 2024 |
Veranstaltungsnummer | 22 |
Dauer | 16 - 18 April 2024 |
Webseite | |
Bekanntheitsgrad | Internationale Veranstaltung |
Ort | CinemaxX Hamburg |
Stadt | Hamburg |
Land | Deutschland |
Externe IDs
ORCID | /0000-0002-1012-8337/work/161407708 |
---|---|
ORCID | /0000-0002-1484-7187/work/161408880 |