Machine learning based classification of cells into chronological stages using single-cell transcriptomics

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Sumeet Pal Singh - , Pancreatic beta-cell Biology and Regeneration (NFoG), Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB) (Autor:in)
  • Sharan Janjuha - , Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Autor:in)
  • Samata Chaudhuri - , Fakultät Chemie u. Lebensmittelchemie, Max Planck Gesellschaft, Forschungsgruppe "Soziale Neurowissenschaften", Technische Universität Dresden (Autor:in)
  • Susanne Reinhardt - , DRESDEN-concept Genome Center (CMCB Core Facility), Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB) (Autor:in)
  • Annekathrin Kraenkel - , Technische Universität Dresden (Autor:in)
  • Sevina Dietz - , Technische Universität Dresden (Autor:in)
  • Anne Eugster - , Technische Universität Dresden (Autor:in)
  • Halil Bilgin - , Abdullah Gul University (Autor:in)
  • Selcuk Korkmaz - , Trakya University (Autor:in)
  • Gokmen Zararsiz - , Erciyes University, Turcosa Analitik (Autor:in)
  • Nikolay Ninov - , Professur für Zellbiologie und Regeneration von Betazellen, Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) - Standort Dresden (Autor:in)
  • John E. Reid - , University of Cambridge (Autor:in)

Abstract

Age-associated deterioration of cellular physiology leads to pathological conditions. The ability to detect premature aging could provide a window for preventive therapies against age-related diseases. However, the techniques for determining cellular age are limited, as they rely on a limited set of histological markers and lack predictive power. Here, we implement GERAS (GEnetic Reference for Age of Single-cell), a machine learning based framework capable of assigning individual cells to chronological stages based on their transcriptomes. GERAS displays greater than 90% accuracy in classifying the chronological stage of zebrafish and human pancreatic cells. The framework demonstrates robustness against biological and technical noise, as evaluated by its performance on independent samplings of single-cells. Additionally, GERAS determines the impact of differences in calorie intake and BMI on the aging of zebrafish and human pancreatic cells, respectively. We further harness the classification ability of GERAS to identify molecular factors that are potentially associated with the aging of beta-cells. We show that one of these factors, junba, is necessary to maintain the proliferative state of juvenile beta-cells. Our results showcase the applicability of a machine learning framework to classify the chronological stage of heterogeneous cell populations, while enabling detection of candidate genes associated with aging.

Details

OriginalspracheEnglisch
Seitenumfang12
FachzeitschriftScientific reports
Jahrgang8
PublikationsstatusVeröffentlicht - 21 Nov. 2018
Peer-Review-StatusJa

Externe IDs

PubMed 30464314
Scopus 85056973435

Schlagworte

Ziele für nachhaltige Entwicklung

Schlagwörter

  • Pancreatic-islets, Dynamics, Signatures, Cycle