Low Frequency Asymptotics for Time-Harmonic Generalized Maxwell Equations in Nonsmooth Exterior Domains

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We discuss the radiation problem of total reflection for a time-harmonic generalized Maxwell system in a non-smooth exterior domain with non-smooth inhomogeneous, anisotropic coefficients converging near infinity with a certain rate towards the identity. By means of the limiting absorption principle, a Fredholm alternative holds true and the eigensolutions decay polynomially resp. exponentially at infinity. We prove that the corresponding eigenvalues do not accumulate even at zero. Next, we show the convergence of the time-harmonic solutions to a solution of an electro-magneto static Maxwell system as the frequency tends to zero. Finally we are able to generalize these results easily to the corresponding Maxwell system with inhomogeneous boundary data. This paper is thought of as the first and introductory one in a series of three papers, which will completely discuss the low frequency behavior of the solutions of the time-harmonic Maxwell equations.

Details

OriginalspracheEnglisch
Seiten (von - bis)591-622
FachzeitschriftAdvances in Mathematical Sciences and Applications
Jahrgang16
Ausgabenummer2
PublikationsstatusVeröffentlicht - 20 Mai 2011
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-4155-7297/work/145698476

Schlagworte

Schlagwörter

  • math.AP, math-ph, math.DG, math.MP, 35Q60, 78A25, 78A30