Low frequency asymptotics and electro-magneto-statics for time-harmonic maxwell's equations in exterior weak lipschitz domains with mixed boundary conditions

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We prove that the time-harmonic solutions to Maxwell's equations in a threedimensional exterior domain converge to a certain static solution as the frequency tends to zero. We work in weighted Sobolev spaces and construct new compactly supported replacements for Dirichlet- Neumann fields. Moreover, we even show convergence in operator norm.

Details

OriginalspracheEnglisch
Seiten (von - bis)4971-5000
Seitenumfang30
FachzeitschriftSIAM journal on mathematical analysis
Jahrgang52
Ausgabenummer5
PublikationsstatusVeröffentlicht - 19 Okt. 2020
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-4155-7297/work/145224226

Schlagworte

Schlagwörter

  • Cohomology groups, Dirichlet-Neumann fields, Electro-magneto-statics, Exterior boundary value problems, Hodge-Helmholtz decompositions, Low frequency asymptotics, Maxwell's equations, Polynomial decay of eigensolutions, Radiating solutions