Low frequency asymptotics and electro-magneto-statics for time-harmonic maxwell's equations in exterior weak lipschitz domains with mixed boundary conditions
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We prove that the time-harmonic solutions to Maxwell's equations in a threedimensional exterior domain converge to a certain static solution as the frequency tends to zero. We work in weighted Sobolev spaces and construct new compactly supported replacements for Dirichlet- Neumann fields. Moreover, we even show convergence in operator norm.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 4971-5000 |
Seitenumfang | 30 |
Fachzeitschrift | SIAM journal on mathematical analysis |
Jahrgang | 52 |
Ausgabenummer | 5 |
Publikationsstatus | Veröffentlicht - 19 Okt. 2020 |
Peer-Review-Status | Ja |
Externe IDs
ORCID | /0000-0003-4155-7297/work/145224226 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Cohomology groups, Dirichlet-Neumann fields, Electro-magneto-statics, Exterior boundary value problems, Hodge-Helmholtz decompositions, Low frequency asymptotics, Maxwell's equations, Polynomial decay of eigensolutions, Radiating solutions