Long-lived spin waves in a metallic antiferromagnet

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • G. Poelchen - , Professur für Oberflächenphysik, European Synchrotron Radiation Facility, Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • J. Hellwig - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • M. Peters - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • Dmitry Yu. Usachov - , Donostia International Physics Center (Autor:in)
  • K. Kliemt - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • C. Laubschat - , Seniorprofessor für Oberflächenphysik (Autor:in)
  • P. M. Echenique - , Donostia International Physics Center, Ikerbasque Basque Foundation for Science (Autor:in)
  • E. V. Chulkov - , Donostia International Physics Center, Centro de Fisica de Materiales CFM/MPC (CSIC-UPV/EHU), University of the Basque Country (Autor:in)
  • C. Krellner - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • S. S.P. Parkin - , Max Planck Institute of Microstructure Physics (Autor:in)
  • D. V. Vyalikh - , Donostia International Physics Center, Ikerbasque Basque Foundation for Science (Autor:in)
  • A. Ernst - , Max Planck Institute of Microstructure Physics, Johannes Kepler Universität Linz (Autor:in)
  • Kurt Kummer - , European Synchrotron Radiation Facility (Autor:in)

Abstract

Collective spin excitations in magnetically ordered crystals, called magnons or spin waves, can serve as carriers in novel spintronic devices with ultralow energy consumption. The generation of well-detectable spin flows requires long lifetimes of high-frequency magnons. In general, the lifetime of spin waves in a metal is substantially reduced due to a strong coupling of magnons to the Stoner continuum. This makes metals unattractive for use as components for magnonic devices. Here, we present the metallic antiferromagnet CeCo2P2, which exhibits long-living magnons even in the terahertz (THz) regime. For CeCo2P2, our first-principle calculations predict a suppression of low-energy spin-flip Stoner excitations, which is verified by resonant inelastic X-ray scattering measurements. By comparison to the isostructural compound LaCo2P2, we show how small structural changes can dramatically alter the electronic structure around the Fermi level leading to the classical picture of the strongly damped magnons intrinsic to metallic systems. Our results not only demonstrate that long-lived magnons in the THz regime can exist in bulk metallic systems, but they also open a path for an efficient search for metallic magnetic systems in which undamped THz magnons can be excited.

Details

OriginalspracheEnglisch
Aufsatznummer5422
FachzeitschriftNature communications
Jahrgang14
Ausgabenummer1
PublikationsstatusVeröffentlicht - Dez. 2023
Peer-Review-StatusJa

Externe IDs

PubMed 37669952