Logic-Guided Message Generation from Raw Real-Time Sensor Data
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Natural language generation in real-time settings with raw sensor data is a challenging task. We find that formulating the task as an end-to-end problem leads to two major challenges in content selection - the sensor data is both redundant and diverse across environments, thereby making it hard for the encoders to select and reason on the data. We here present a new corpus for a specific domain that instantiates these properties. It includes handover utterances that an assistant for a semi-autonomous drone uses to communicate with humans during the drone flight. The corpus consists of sensor data records and utterances in 8 different environments. As a structured intermediary representation between data records and text, we explore the use of description logic (DL). We also propose a neural generation model that can alert the human pilot of the system state and environment in preparation of the handover of control.
Details
Originalsprache | Englisch |
---|---|
Titel | Proceedings of the 13th Language Resources and Evaluation Conference (LREC’22) |
Redakteure/-innen | Nicoletta Calzolari, Frederic Bechet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Helene Mazo, Jan Odijk, Stelios Piperidis |
Seiten | 6899-6908 |
Seitenumfang | 10 |
ISBN (elektronisch) | 9791095546726 |
Publikationsstatus | Veröffentlicht - 2022 |
Peer-Review-Status | Ja |
Externe IDs
Scopus | 85144349715 |
---|---|
ORCID | /0000-0001-9936-0943/work/142238134 |
Schlagworte
Forschungsprofillinien der TU Dresden
DFG-Fachsystematik nach Fachkollegium
Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis
ASJC Scopus Sachgebiete
Schlagwörter
- content selection, description logic, domain variability, experiment, low resources, message generation