Locally eventually positive operator semigroups

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We initiate a theory of locally eventually positive operator semigroups on Banach lattices. Intuitively this means: given a positive initial datum, the solution of the corresponding Cauchy problem becomes (and stays) positive in a part of the domain, after a sufficiently large time. We give sufficient criteria for local eventual positivity of the semigroup and apply them to concrete operators, for instance, the square of the Dirichlet Laplacian on L 2 and the Dirichlet bi-Laplacian on L p-spaces. Besides, we establish various spectral and convergence properties of locally eventually positive semigroups.

Details

OriginalspracheEnglisch
Seiten (von - bis)205-244
Seitenumfang40
FachzeitschriftJournal of Operator Theory
Jahrgang88
Ausgabenummer1
PublikationsstatusVeröffentlicht - 2022
Peer-Review-StatusJa

Externe IDs

Scopus 85132582736
WOS 000907120200009

Schlagworte

DFG-Fachsystematik nach Fachkollegium

Schlagwörter

  • C_0-semigroup, local eventual positivity, One parameter semigroups of linear operators, Antimaximum principle, Eventually positive resolvent, Eventually positive semigroup, Locally eventually positive resolvent, Locally eventually positive semigroup, Positive spectral projection, semigroups on Banach lattices

Bibliotheksschlagworte