Locally Adapted Microstructures in an Additively Manufactured Titanium Aluminide Alloy Through Process Parameter Variation and Heat Treatment

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Juliane Moritz - , Professur für Werkstofftechnik, Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Mirko Teschke - , Technische Universität (TU) Dortmund (Autor:in)
  • Axel Marquardt - , Professur für Werkstofftechnik, Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Lukas Stepien - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Elena López - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Frank Brueckner - , Fraunhofer-Institut für Werkstoff- und Strahltechnik, Luleå University of Technology (Autor:in)
  • Frank Walther - , Technische Universität (TU) Dortmund (Autor:in)
  • Christoph Leyens - , Professur für Werkstofftechnik, Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)

Abstract

Electron beam powder bed fusion (PBF-EB/M) has been attracting great research interest as a promising technology for additive manufacturing of titanium aluminide alloys. However, challenges often arise from the process-induced evaporation of aluminum, which is linked to the PBF-EB/M process parameters. This study applies different volumetric energy densities during PBF-EB/M processing to deliberately adjust the aluminum contents in additively manufactured Ti–43.5Al–4Nb–1Mo–0.1B (TNM-B1) samples. The specimens are subsequently subjected to hot isostatic pressing (HIP) and a two-step heat treatment. The influence of process parameter variation and heat treatments on microstructure and defect distribution are investigated using optical and scanning electron microscopy, as well as X-ray computed tomography (CT). Depending on the aluminum content, shifts in the phase transition temperatures can be identified via differential scanning calorimetry (DSC). It is confirmed that the microstructure after heat treatment is strongly linked to the PBF-EB/M parameters and the associated aluminum evaporation. The feasibility of producing locally adapted microstructures within one component through process parameter variation and subsequent heat treatment can be demonstrated. Thus, fully lamellar and nearly lamellar microstructures in two adjacent component areas can be adjusted, respectively.

Details

OriginalspracheEnglisch
Aufsatznummer2200917
FachzeitschriftAdvanced engineering materials
Jahrgang25
Ausgabenummer2
PublikationsstatusVeröffentlicht - Feb. 2023
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0001-8126-8532/work/173053205

Schlagworte

Schlagwörter

  • additive manufacturing, electron beam powder bed fusion, locally adapted microstructures, microstructure characterization, titanium aluminides, two-step heat treatments