Local projection stabilisation on S-type meshes for convection-diffusion problems with characteristic layers

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

Singularly perturbed convection-diffusion problems with exponential and characteristic layers are considered on the unit square. The discretisation is based on layer-adapted meshes. The standard Galerkin method and the local projection scheme are analysed for bilinear and higher order finite element where enriched spaces were used. For bilinears, first order convergence in the epsilon-weighted energy norm is shown for both the Galerkin and the stabilised scheme. However, supercloseness results of second order hold for the Galerkin method in the epsilon-weighted energy norm and for the local projection scheme in the corresponding norm. For the enriched Q(p)-elements, p >= 2, which already contain the space Pp+1, a convergence order p + 1 in the epsilon-weighted energy norm is proved for both the Galerkin method and the local projection scheme. Furthermore, the local projection methods provides a supercloseness result of order p + 1 in local projection norm.

Details

OriginalspracheEnglisch
Seiten (von - bis)135-167
Seitenumfang33
FachzeitschriftComputing
Jahrgang87
Ausgabenummer3-4
PublikationsstatusVeröffentlicht - Mai 2010
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

Scopus 77952893901
ORCID /0000-0002-2458-1597/work/142239718

Schlagworte

Schlagwörter

  • Singular perturbation, Characteristic layers, Shishkin meshes, Local projection, SHISHKIN MESH, CONVERGENCE