Live-cell lipid biochemistry reveals a role of diacylglycerol side-chain composition for cellular lipid dynamics and protein affinities

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Milena Schuhmacher - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Andreas T. Grasskamp - , Leibniz-Forschungsinstitut für Molekulare Pharmakologie (Autor:in)
  • Pavel Barahtjan - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Nicolai Wagner - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Benoit Lombardot - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Jan S. Schuhmacher - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Pia Sala - , Deutsches Zentrum für Diabetesforschung - Paul Langerhans Institut Dresden (Partner: HMGU), Deutsches Zentrum für Diabetesforschung (DZD e.V.) (Autor:in)
  • Annett Lohmann - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Ian Henry - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Andrej Shevchenko - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Ünal Coskun - , Deutsches Zentrum für Diabetesforschung - Paul Langerhans Institut Dresden (Partner: HMGU), Deutsches Zentrum für Diabetesforschung (DZD e.V.) (Autor:in)
  • Alexander M. Walter - , Leibniz-Forschungsinstitut für Molekulare Pharmakologie (Autor:in)
  • André Nadler - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)

Abstract

Every cell produces thousands of distinct lipid species, but insight into how lipid chemical diversity contributes to biological signaling is lacking, particularly because of a scarcity of methods for quantitatively studying lipid function in living cells. Using the example of diacylglycerols, prominent second messengers, we here investigate whether lipid chemical diversity can provide a basis for cellular signal specification. We generated photo-caged lipid probes, which allow acute manipulation of distinct diacylglycerol species in the plasma membrane. Combining uncaging experiments with mathematical modeling, we were able to determine binding constants for diacylglycerol-protein interactions, and kinetic parameters for diacylglycerol transbilayer movement and turnover in quantitative live-cell experiments. Strikingly, we find that affinities and kinetics vary by orders of magnitude due to diacylglycerol side-chain composition. These differences are sufficient to explain differential recruitment of diacylglycerol binding proteins and, thus, differing downstream phosphorylation patterns. Our approach represents a generally applicable method for elucidating the biological function of single lipid species on subcellular scales in quantitative live-cell experiments.

Details

OriginalspracheEnglisch
Seiten (von - bis)7729-7738
Seitenumfang10
FachzeitschriftProceedings of the National Academy of Sciences of the United States of America : PNAS
Jahrgang117
Ausgabenummer14
PublikationsstatusVeröffentlicht - 25 März 2020
Peer-Review-StatusJa

Externe IDs

PubMed 32213584
PubMed PMC7149225
Scopus 85083107154

Schlagworte

Schlagwörter

  • Caged lipid probes, Diacylglycerol, Mathematical modeling, Protein kinase C, Signaling lipids

Bibliotheksschlagworte