Linear dynamical systems with continuous weight functions

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

In discrete-time linear dynamical systems (LDSs), a linear map is repeatedly applied to an initial vector yielding a sequence of vectors called the orbit of the system. A weight function assigning weights to the points in the orbit can be used to model quantitative aspects, such as resource consumption, of a system modelled by an LDS. This paper addresses the problems to compute the mean payoff, the total accumulated weight, and the discounted accumulated weight of the orbit under continuous weight functions and polynomial weight functions as a special case. Besides general LDSs, the special cases of stochastic LDSs and of LDSs with bounded orbits are considered. Furthermore, the problem of deciding whether an energy constraint is satisfied by the weighted orbit, i.e., whether the accumulated weight never drops below a given bound, is analysed.

Details

OriginalspracheEnglisch
TitelHSCC 2024 - Proceedings of the 27th ACM International Conference on Hybrid Systems
Herausgeber (Verlag)Association for Computing Machinery, Inc
Seiten22:1-22:11
Seitenumfang11
ISBN (elektronisch)9798400705229
PublikationsstatusVeröffentlicht - 14 Mai 2024
Peer-Review-StatusJa

Publikationsreihe

ReiheCPSWeek: Cyber-physical Systems

Konferenz

Titel27th ACM International Conference on Hybrid Systems: Computation and Control
KurztitelHSCC 2024
Veranstaltungsnummer27
Dauer14 - 16 Mai 2024
Webseite
OrtHong Kong Science Park
StadtHong Kong
LandChina

Externe IDs

ORCID /0000-0002-5321-9343/work/160951232
dblp conf/hybrid/AghamovBKOP24
ORCID /0000-0003-4829-0476/work/165453942

Schlagworte

Schlagwörter

  • discounted reward, linear dynamical systems, mean payoff, total reward