Limitations of intra-operator parallelism using heterogeneous computing resources

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Tomas Karnagel - , Technische Universität Dresden (Autor:in)
  • Dirk Habich - , Technische Universität Dresden (Autor:in)
  • Wolfgang Lehner - , Technische Universität Dresden (Autor:in)

Abstract

The hardware landscape is changing from homogeneous multi-core systems towards wildly heterogeneous systems combining different computing units, like CPUs and GPUs. To utilize these heterogeneous environments, database query execution has to adapt to cope with different architectures and computing behaviors. In this paper, we investigate the simple idea of partitioning an operator’s input data and processing all data partitions in parallel, one partition per computing unit. For heterogeneous systems, data has to be partitioned according to the performance of the computing units. We define a way to calculate the partition sizes, analyze the parallel execution exemplarily for two database operators, and present limitations that could hinder significant performance improvements. The findings in this paper can help system developers to assess the possibilities and limitations of intra-operator parallelism in heterogeneous environments, leading to more informed decisions if this approach is beneficial for a given workload and hardware environment.

Details

OriginalspracheEnglisch
TitelAdvances in Databases and Information Systems - 20th East European Conference, ADBIS 2016, Proceedings
Redakteure/-innenPetr Šaloun, Mirjana Ivanović, Jaroslav Pokorný, Bernhard Thalheim
Herausgeber (Verlag)Springer, Berlin [u. a.]
Seiten291-305
Seitenumfang15
ISBN (Print)9783319440385
PublikationsstatusVeröffentlicht - 2016
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

ReiheLecture Notes in Computer Science, Volume 9809
ISSN0302-9743

Konferenz

Titel20th East European Conference on Advances in Databases and Information Systems, ADBIS 2016
Dauer28 - 31 August 2016
StadtPrague
LandTschechische Republik

Externe IDs

ORCID /0000-0001-8107-2775/work/142253539

Schlagworte

Schlagwörter

  • Data partitioning, Dataflow parallelism, GPU, Heterogeneous systems, Intra-operator parallelism

Bibliotheksschlagworte