Lightweight distributed computing for intraoperative real-time image guidance

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Stefan Suwelack - , Karlsruher Institut für Technologie (Autor:in)
  • Darko Katic - , Karlsruher Institut für Technologie (Autor:in)
  • Simon Wagner - , Karlsruher Institut für Technologie (Autor:in)
  • Patrick Spengler - , Karlsruher Institut für Technologie (Autor:in)
  • Sebastian Bodenstedt - , Karlsruher Institut für Technologie (Autor:in)
  • Sebastian Röhl - , Karlsruher Institut für Technologie (Autor:in)
  • Rüdiger Dillmann - , Karlsruher Institut für Technologie (Autor:in)
  • Stefanie Speidel - , Nationales Centrum für Tumorerkrankungen Dresden, Karlsruher Institut für Technologie (Autor:in)

Abstract

In order to provide real-time intraoperative guidance, computer assisted surgery (CAS) systems often rely on computationally expensive algorithms. The real-time constraint is especially challenging if several components such as intraoperative image processing, soft tissue registration or context aware visualization are combined in a single system. In this paper, we present a lightweight approach to distribute the workload over several workstations based on the OpenIGTLink protocol. We use XML-based message passing for remote procedure calls and native types for transferring data such as images, meshes or point coordinates. Two different, but typical scenarios are considered in order to evaluate the performance of the new system. First, we analyze a real-time soft tissue registration algorithm based on a finite element (FE) model. Here, we use the proposed approach to distribute the computational workload between a primary workstation that handles sensor data processing and visualization and a dedicated workstation that runs the real-time FE algorithm. We show that the additional overhead that is introduced by the technique is small compared to the total execution time. Furthermore, the approach is used to speed up a context aware augmented reality based navigation system for dental implant surgery. In this scenario, the additional delay for running the computationally expensive reasoning server on a separate workstation is less than a millisecond. The results show that the presented approach is a promising strategy to speed up real-time CAS systems.

Details

OriginalspracheEnglisch
TitelMedical Imaging 2012
PublikationsstatusVeröffentlicht - 2012
Peer-Review-StatusJa

Publikationsreihe

ReiheProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Band8316
ISSN1605-7422

Konferenz

TitelMedical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling
Dauer5 - 7 Februar 2012
StadtSan Diego, CA
LandUSA/Vereinigte Staaten

Externe IDs

ORCID /0000-0002-4590-1908/work/163294164

Schlagworte

Schlagwörter

  • distributed computing, image-guided therapy, soft tissue registration, visualization