Light-Modulated Surface Micropatterns with Multifunctional Surface Properties on Photodegradable Polymer Films

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Juanjuan Wang - , Tianjin University (Autor:in)
  • Jixun Xie - , Tianjin University (Autor:in)
  • Chuanyong Zong - , Tianjin University (Autor:in)
  • Xue Han - , Tianjin University (Autor:in)
  • Jingxin Zhao - , Tianjin University (Autor:in)
  • Shichun Jiang - , Tianjin University (Autor:in)
  • Yanping Cao - , Tsinghua University (Autor:in)
  • Andreas Fery - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Conghua Lu - , Tianjin University (Autor:in)

Abstract

Photodegradable polymers constitute an emerging class of materials that are expected to possess advances in the areas of micro/nano- and biotechnology. Herein, we report a green and effective strategy to fabricate light-responsive surface micropatterns by taking advantage of photodegradation chemistry. Thanks to the molecular chain breakage during the photolysis process, the stress field of photodegradable polymer-based wrinkling systems undergoes continuous disturbance, leading to the release/reorganization of the internal stress. Revealed by systematic experiments, the light-induced stress release mechanism enables the dynamic adaption of not only thermal-induced labyrinth wrinkles, but uniaxially oriented wrinkle microstructures induced by mechanical straining. This method paves the way for their diverse applications, for example, in optical information display and storage, and the smart fabrication of multifunctional surfaces as demonstrated here.

Details

OriginalspracheEnglisch
Seiten (von - bis)37402-37410
Seitenumfang9
FachzeitschriftACS Applied Materials and Interfaces
Jahrgang9
Ausgabenummer42
PublikationsstatusVeröffentlicht - 25 Okt. 2017
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 28981250

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • dynamic pattern, multifunctional surface, photodegradation, stress release, surface wrinkling