Leveraging Machine Learning for Real-Time Performance Prediction of Near Infrared Separators in Waste Sorting Plant

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

Many small and medium enterprises (SME) often fail to fully utilize the data they collect due to a lack of technical expertise. The ecoKI platform, a low-code solution that simplifies machine learning application for SMEs, showed a promising answer to the challenge. This study explores the application of ecoKI platform to design process monitoring tools for waste sorting plants. NIR separator data were processed through ecoKI�s building blocks to train two neural network architectures�MLP and LSTM�for predicting NIR separation efficiency. The results showed that the models accurately predicted NIR output and effectively identified regions where NIR separation performance declined, demonstrating the potential of data-driven approaches for real-time performance monitoring. This work highlights how SMEs can leverage existing data for operational efficiency and decision-making, offering an accessible solution for industries with limited machine learning expertise. The approach is adaptable to various industrial contexts, paving the way for future advancements in automated, data-driven optimization of equipment performance.

Details

OriginalspracheEnglisch
TitelProceedings of the 35th European Symposium on Computer Aided Process Engineering (ESCAPE 35)
Redakteure/-innenJan Van Impe, Grégoire Léonard, Satyajeet Sheetal Bhonsale, Monika Polanska, Filip Logist
Herausgeber (Verlag)PSE Press
Seiten1688-1693
Seitenumfang6
ISBN (Print)978-1-7779403-3-1
PublikationsstatusVeröffentlicht - 27 Juli 2025
Peer-Review-StatusJa

Publikationsreihe

ReiheSystems and Control Transactions
Band4
ISSN2818-4734

Externe IDs

ORCID /0009-0007-3852-372X/work/188857294
ORCID /0000-0002-5814-5128/work/188859611
ORCID /0000-0001-5165-4459/work/188860183
Mendeley e5a4ab7f-fbe9-392b-933a-aafd80548711