Leveraging Machine Learning for Real-Time Performance Prediction of Near Infrared Separators in Waste Sorting Plant
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Many small and medium enterprises (SME) often fail to fully utilize the data they collect due to a lack of technical expertise. The ecoKI platform, a low-code solution that simplifies machine learning application for SMEs, showed a promising answer to the challenge. This study explores the application of ecoKI platform to design process monitoring tools for waste sorting plants. NIR separator data were processed through ecoKI�s building blocks to train two neural network architectures�MLP and LSTM�for predicting NIR separation efficiency. The results showed that the models accurately predicted NIR output and effectively identified regions where NIR separation performance declined, demonstrating the potential of data-driven approaches for real-time performance monitoring. This work highlights how SMEs can leverage existing data for operational efficiency and decision-making, offering an accessible solution for industries with limited machine learning expertise. The approach is adaptable to various industrial contexts, paving the way for future advancements in automated, data-driven optimization of equipment performance.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | Proceedings of the 35th European Symposium on Computer Aided Process Engineering (ESCAPE 35) |
| Redakteure/-innen | Jan Van Impe, Grégoire Léonard, Satyajeet Sheetal Bhonsale, Monika Polanska, Filip Logist |
| Herausgeber (Verlag) | PSE Press |
| Seiten | 1688-1693 |
| Seitenumfang | 6 |
| ISBN (Print) | 978-1-7779403-3-1 |
| Publikationsstatus | Veröffentlicht - 27 Juli 2025 |
| Peer-Review-Status | Ja |
Publikationsreihe
| Reihe | Systems and Control Transactions |
|---|---|
| Band | 4 |
| ISSN | 2818-4734 |
Externe IDs
| ORCID | /0009-0007-3852-372X/work/188857294 |
|---|---|
| ORCID | /0000-0002-5814-5128/work/188859611 |
| ORCID | /0000-0001-5165-4459/work/188860183 |
| Mendeley | e5a4ab7f-fbe9-392b-933a-aafd80548711 |