Learning stochastic filtering
Publikation: Beitrag in Fachzeitschrift › Kurzartikel (Letter) / Leserbrief mit Originaldaten › Beigetragen › Begutachtung
Beitragende
Abstract
We quantify the performance of approximations to stochastic filtering by the Kullback-Leibler divergence to the optimal Bayesian filter. Using a two-state Markov process that drives a Brownian measurement process as prototypical test case, we compare two stochastic filtering approximations: a static low-pass filter as baseline, and machine learning of Volterra expansions using nonlinear Vector Auto-Regression (nVAR). We highlight the crucial role of the chosen performance metric, and present two solutions to the specific challenge of predicting a likelihood bounded between 0 and 1.
Details
| Originalsprache | Englisch |
|---|---|
| Aufsatznummer | 31002 |
| Fachzeitschrift | Europhysics letters |
| Jahrgang | 140 |
| Ausgabenummer | 3 |
| Publikationsstatus | Veröffentlicht - 1 Nov. 2022 |
| Peer-Review-Status | Ja |
Externe IDs
| Scopus | 85142530314 |
|---|