Learning short-option valuation in the presence of rare events

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We present a neural-network valuation of financial derivatives in the case of fat-tailed underlying asset returns. A two-layer perceptron is trained on simulated prices taking into account the well-known effect of volatility smile. The prices of the underlier are generated using fractional calculus algorithms, and option prices are computed by means of the Bouchaud-Potters formula. This learning scheme is tested on market data; the results show a very good agreement between perceptron option prices and real market ones.

Details

OriginalspracheEnglisch
Seiten (von - bis)563-564
Seitenumfang2
FachzeitschriftInternational journal of theoretical and applied finance
Jahrgang3
Ausgabenummer3
PublikationsstatusVeröffentlicht - 18 Jan. 2000
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • cond-mat.stat-mech, cond-mat.dis-nn, q-fin.PR