Learning short-option valuation in the presence of rare events
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We present a neural-network valuation of financial derivatives in the case of fat-tailed underlying asset returns. A two-layer perceptron is trained on simulated prices taking into account the well-known effect of volatility smile. The prices of the underlier are generated using fractional calculus algorithms, and option prices are computed by means of the Bouchaud-Potters formula. This learning scheme is tested on market data; the results show a very good agreement between perceptron option prices and real market ones.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 563-564 |
Seitenumfang | 2 |
Fachzeitschrift | International journal of theoretical and applied finance |
Jahrgang | 3 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - 18 Jan. 2000 |
Peer-Review-Status | Ja |
Schlagworte
Schlagwörter
- cond-mat.stat-mech, cond-mat.dis-nn, q-fin.PR